【題目】我們約定:對(duì)角線互相垂直的凸四邊形叫做“正垂形”.
(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有 ;
②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形 “正垂形”.(填“是”或“不是”)
(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時(shí)針?lè)较蚺帕械乃膫(gè)動(dòng)點(diǎn),AC與BD交于點(diǎn)E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時(shí),求AC2+BD2的取值范圍;
(3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),B是拋物線與y軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4.試直接寫出滿足下列三個(gè)條件的拋物線的解析式;
①; ②; ③“正垂形”ABCD的周長(zhǎng)為12.
【答案】(1)①菱形、正方形;②不是;(2)6≤AC2+BD2≤7;(3)y=x2﹣9.
【解析】
(1)①∵菱形、正方形的對(duì)角線相互垂直,∴菱形、正方形為“正垂形”,故:答案是:菱形、正方形;
②如圖,當(dāng)BC=CD時(shí),AB=AD,AC=AC,∴△ABC≌△ADC,可知,四邊形ABCD不是“正垂形;
(2)由∠ACB-∠CDB=∠ACD-∠CBD,可知AC⊥BD;OE2=OM2+ON2=(AC)2+(BD)2=(AC2+BD2),即可求解;
(3)設(shè):△=b2-4ac,則:A(,0)、B(0,c)、C(,0)、D(0,-ac),由=+;=+,求a=1;由=+求得b=0;則四邊形ABCD為菱形,即:4AD=12,即可求解.
解:(1)①∵菱形、正方形的對(duì)角線相互垂直,∴菱形、正方形為“正垂形”,
∵平行四邊形、矩形對(duì)角線不垂直,∴它們不是“正垂形”,
故:答案是:菱形、正方形;
②如圖,當(dāng)BC=CD時(shí),AB=AD,AC=AC,∴△ABC≌△ADC,
∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,
∴當(dāng)CB≠CD時(shí),四邊形ABCD不是“正垂形”,
故:答案為:不是;
(2)∵∠ACB﹣∠CDB=∠ACD﹣∠CBD,而∠ACB=∠ABD,∠ACD=∠ABD,
即:∠ABD+∠BDC=∠DBC+∠ADB,而:∠ABD+∠BDC=∠DBC+∠ADB=180°,
∴∠ACB+∠DBC=∠BDC+∠ACD=90°,∴AC⊥BD;
如下圖:過(guò)點(diǎn)O分別作AC、BD的垂線,垂足為M、N,連接OA、OD,
OE2=OM2+ON2=(AC)2+(BD)2=(AC2+BD2),
把≤OE≤,代入上式得:
6≤AC2+BD2≤7;
(3)設(shè):△=b2﹣4ac,則:A(,0)、B(0,c)、C(,0)、D(0,﹣ac),
OA=,OB=﹣c,OC=,OD=﹣ac,BD=﹣ac﹣c,
S=ACBD=﹣(ac+c),S1=OAOB=﹣,S2=OCOD=﹣,
S3=OAOD=﹣,S4=OBOC=﹣,
=+,=+, 即:+=+;
∴,即a=1,
則:S=﹣c,s1=﹣,S4=,
∵=+,∴S=S1+S2+2,
∴﹣c=﹣+2,解得:b=0,
∴A(﹣,0)B(0,c)C(,0)D(0,﹣c),
∴四邊形ABCD為菱形,即:4AD=12,
∵AD2=c2﹣c,解得:c=﹣9或10(舍去),
即:y=x2﹣9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)儲(chǔ)備
如圖①,點(diǎn)E、F分別是y=3和y=﹣1上的動(dòng)點(diǎn),則EF的最小值是 ;
方法儲(chǔ)備
直角坐標(biāo)系的建立,在代數(shù)和幾何之間架起了一座橋梁,用代數(shù)的方法解決幾何問(wèn)題:某數(shù)學(xué)小組在自主學(xué)習(xí)時(shí)了解了三角形的中位線及相關(guān)的定理,在學(xué)習(xí)了《坐標(biāo)與位置)后,該小組同學(xué)深入思考,利用中點(diǎn)坐標(biāo)公式,給出了三角形中位線定理的一種證明方法.如圖②,在△ABC中,點(diǎn)D,E分別是AB,AC邊的中點(diǎn),DE稱為△ABC的中位線,則DE∥BC且DE=BC.該數(shù)學(xué)小組建立如圖③的直角坐標(biāo)系,設(shè)點(diǎn)A(a,b),點(diǎn)C (0,c)(c>0).請(qǐng)你利用該數(shù)學(xué)學(xué)習(xí)小組的思路證明DE∥BC且DE=BC.(提示:中點(diǎn)坐標(biāo)公式,A(x1,y1),B(x2,y2),則A,B中點(diǎn)坐標(biāo)為(,).
綜合應(yīng)用
結(jié)合上述知識(shí)和方法解決問(wèn)題,如圖④,在△ABC中,∠ACB=90°,AC=3,BC=6,延長(zhǎng)AC至點(diǎn) D.DE⊥AD,連接EC并延長(zhǎng)交AB邊于點(diǎn)F.若2CD+DE=6,則EF是否存在最小值,若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平行四邊形在平面直角坐標(biāo)系中,其中點(diǎn)的坐標(biāo)分別是,,點(diǎn)在軸正半軸上,點(diǎn)為的中點(diǎn),點(diǎn)在軸正半軸上,
(1)點(diǎn)的坐標(biāo)為______,點(diǎn)的坐標(biāo)為_______.
(2)求點(diǎn)的坐標(biāo).
(3)如圖2,根據(jù)(2)中結(jié)論,將順時(shí)針旋轉(zhuǎn)至,求的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,將一塊含有30°角的直角三角尺DEF按如圖所示放置,讓三角尺在BC所在的直線上向右平移.如圖①,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)A恰好落在三角尺的斜邊DF上.
(1)利用圖①證明:EF=2BC.
(2)在三角尺的平移過(guò)程中,在圖②中線段AH=BE是否始終成立(假定AB,AC與三角尺的斜邊的交點(diǎn)分別為G,H)?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為A (0,2),B(﹣1,0),點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過(guò)點(diǎn)D.
(1)如圖1,若該拋物線經(jīng)過(guò)原點(diǎn)O,且a=﹣1.
①求點(diǎn)D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問(wèn):在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過(guò)點(diǎn)E(﹣1,1),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余,若符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),請(qǐng)直接寫出a的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的兩個(gè)頂點(diǎn)坐標(biāo)為,,若將菱形繞點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn),則第秒時(shí),菱形兩對(duì)角線交點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共件,這兩種商品的進(jìn)價(jià)、售價(jià)如表所示:
進(jìn)價(jià)(元/件) | 售價(jià)(元/件) | |
甲種商品 | ||
乙種商品 |
設(shè)購(gòu)進(jìn)甲種商品(,且為整數(shù))件,售完此兩種商品總利潤(rùn)為元.
(1)該商場(chǎng)計(jì)劃最多投入元用于購(gòu)進(jìn)這兩種商品共件,求至少購(gòu)進(jìn)甲種商品多少件?
(2)求與的函數(shù)關(guān)系式;
(3)若售完這些商品,商場(chǎng)可獲得的最大利潤(rùn)是__________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于A (-1,0),B (5,0)兩點(diǎn),直線與y軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是x軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作⊥軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在軸上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,請(qǐng)回答下列問(wèn)題
材料一:我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,即已知三角形的三邊長(zhǎng),求它的面積.用現(xiàn)代式子表示即為:S=…①(其中a,b,c為三角形的三邊長(zhǎng),S為面積)而另一個(gè)文明古國(guó)古希臘也有求三角形面積的“海倫公式”;S=……②(其中p=)
材料二:對(duì)于平方差公式:a2﹣b2=(a+b)(a﹣b)
公式逆用可得:(a+b)(a﹣b)=a2﹣b2,
例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c)
(1)若已知三角形的三邊長(zhǎng)分別為3、4、5,請(qǐng)?jiān)嚪謩e運(yùn)用公式①和公式②,計(jì)算該三角形的面積;
(2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋嚕?/span>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com