如圖,在等腰梯形ABCD中,AD∥BC,AE⊥BC于點E.DF⊥BC于點F.AD=2cm,BC=6cm,AE=4cm.點P、Q分別在線段AE、DF上,順次連接B、P、Q、C,線段BP、PQ、QC、CB所圍成的封閉圖形記為M,若點P在線段AE上運動時,點Q也隨之精英家教網在線段DF上運動,使圖形M的形狀發(fā)生改變,但面積始終為10cm2,設EP=xcm,F(xiàn)Q=ycm.解答下列問題:
(1)直接寫出當x=3時y的值;
(2)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)當x取何值時,圖形M成為等腰梯形?圖形M成為三角形?
(4)直接寫出線段PQ在運動過程中所能掃過的區(qū)域的面積.
分析:(1)由等腰梯形的性質得:BE=EF=FC=2,在圖形中找到等量關系SM=S△BPE+S△QFC+S梯形QFEP,代入三角形面積公式、梯形面積公式以及已知條件解答即可;
(2)在圖形中找到等量關系SM=S△BPE+S△QFC+S梯形QFEP,代入三角形面積公式、梯形面積公式以及x、y的取值范圍解答即可;
(3)若圖形M為等腰梯形(如圖1),則EP=FQ,即x=-x+5,解得x=
5
2
;若圖形M為等腰三角形,分兩種情形:
①當點P、Q、C在一條直線上時(如圖2),EP是△BPC的高;
②當點B、P、Q在一條直線上時(如圖3),F(xiàn)Q是△BQC的高;
可根據(jù)M的值及底邊BC的長,分別求出兩種情況下的x的值.
(4)通過畫圖可發(fā)現(xiàn),線段PQ掃過的部分是兩個全等的三角形,且都是以x最小時AP的長為底,
1
2
AD的長為高,在(2)中已經求得x的取值范圍為1≤x≤4,所以此時AP=AE-xmin=3,那么線段PQ掃過的面積即為:2S=2×
1
2
×3×1=3,由此得解.
解答:解:(1)由等腰梯形的性質得:BE=EF=FC=2,
∴SM=S△BPE+S△QFC+S梯形QFEP
=
1
2
BE•x+
1
2
FC•y+
x+y
2
•EF
=
1
2
×2x+
1
2
×2y+
x+y
2
×2
=2(x+y),
把SM=10,x=3代入上式,解得y=2.

(2)由等腰梯形的性質得:BE=EF=FC=2,
∵S△BEP+S梯形PEFQ+S△FCQ=S梯形M,
1
2
×2x+
1
2
(x+y)×2+
1
2
×2y=10,
∴y=-x+5,
0≤x≤4
0≤-x+5≤4
,得1≤x≤4.

(3)若圖形M為等腰梯形(如圖1),則EP=FQ,即x=-x+5,解得x=
5
2

∴當x=
5
2
時,圖形M為等腰梯形.
若圖形M為三角形,分兩種情形:
①當點P、Q、C在一條直線上時(如圖2),EP是△BPC的高,
1
2
BC•EP=10,即
1
2
×6x=10,解得x=
10
3

②當點B、P、Q在一條直線上時(如圖3),F(xiàn)Q是△BQC的高,
1
2
BC•FQ=10,即
1
2
×6×(-x+5)=10,解得x=
5
3
;
∴當x=
10
3
5
3
時,圖形M為三角形.

(4)線段PQ掃過的部分是兩個全等的三角形,且都是以x最小時AP的長為底,
1
2
AD的長為高,在(2)中已經求得x的取值范圍為1≤x≤4,所以此時AP=AE-xmin=3,那么線段PQ掃過的面積即為:2S=2×
1
2
×3×1=3cm2;
評分說明:(4)中不寫單位不扣分,線段PQ在運動過程中所能掃過的區(qū)域為圖4中陰影部分精英家教網
點評:本題主要考查了等腰梯形的性質、三角形的面積公式以及梯形的面積公式;在解決動點類問題時,一定要注意分類討論,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
(1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側部分的面積為S.

  

(1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習冊答案