【題目】如圖,菱形OABC的頂點O在坐標系原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點O順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標為( )
A.(﹣,) B.(,﹣)
C.(2,﹣2) D.(,﹣)
【答案】B
【解析】
試題分析:首先連接OB,OB′,過點B′作B′E⊥x軸于E,由旋轉(zhuǎn)的性質(zhì),易得∠BOB′=105°,由菱形的性質(zhì),易證得△AOB是等邊三角形,即可得OB′=OB=OA=2,∠AOB=60°,繼而可求得∠AOB′=45°,由等腰直角三角形的性質(zhì),即可求得答案.
解:連接OB,OB′,過點B′作B′E⊥x軸于E,
根據(jù)題意得:∠BOB′=105°,
∵四邊形OABC是菱形,
∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,
∴△OAB是等邊三角形,
∴OB=OA=2,
∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,
∴OE=B′E=OB′sin45°=2×=,
∴點B′的坐標為:(,﹣).
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】下列各組數(shù)中,不是互為相反意義的量的是( )
A. 向東走20千米與向西走15千米 B. 收入200元與虧損30元
C. 超過0.05mm與不足0.03mm D. 上升10米和下降7米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC>AB,點P為△ABC所在平面內(nèi)一點,且點P與△ABC的任意兩個頂點構(gòu)成△PAB,△PBC,△PAC均是等腰三角形,則滿足上述條件的所有點P的個數(shù)為 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F.則下面結(jié)論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點到B、C兩點距離相等;④圖中共有3對全等三角形,正確的有: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點B和點C分別為∠MAN兩邊上的點,AB=AC.
(1)按下列語句畫出圖形:
①AD⊥BC,垂足為D;
②∠BCN的平分線CE與AD的延長線交于點E;
③連接BE.
(2)在完成(1)后不添加線段和字母的情況下,請你寫出除△ABD≌△ACD外的兩對全等三角形: ≌ , ≌ ;并選擇其中的一對全等三角形,予以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=2,則圖中陰影部分的面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上任一點,過D作AB的垂線,分別交邊AC、BC的延長線于E、F兩點,∠BAC、∠BFD的平分線交于點I,AI交DF于點M,F(xiàn)I交AC于點N,連接BI.下列結(jié)論:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正確結(jié)論的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com