已知:拋物線與x軸的兩個(gè)交點(diǎn)分別為A(1,0)和B(3,0),與y軸交于點(diǎn)C.

(1)求此二次函數(shù)的解析式;
(2)寫(xiě)出點(diǎn)C的坐標(biāo)________,頂點(diǎn)D的坐標(biāo)為_(kāi)_________;
(3)將直線CD沿y軸向下平移3個(gè)單位長(zhǎng)度,求平移后直線m的解析式;
(4)在直線m上是否存在一點(diǎn)E,使得以點(diǎn)E、A、B、C為頂點(diǎn)的四邊形是梯形,如果存在,請(qǐng)直接寫(xiě)出所有滿足條件的E點(diǎn)的坐標(biāo)__________________________________(不必寫(xiě)出過(guò)程).

(2);(2)(0,3),(2,-1);(3);(4)(-1,2)或(-1.5,3)

解析試題分析:(1)由拋物線過(guò)點(diǎn)A(1,0)和B(3,0)根據(jù)待定系數(shù)法列方程組求解即可;
(2)根據(jù)(1)中求得的函數(shù)解析式結(jié)合二次函數(shù)的性質(zhì)求解即可;
(3)先設(shè)CD:,由點(diǎn)C、D的坐標(biāo)根據(jù)待定系數(shù)法即可求得直線CD的解析式,再根據(jù)直線的平移規(guī)律:上加下減,即可求得結(jié)果;
(4)根據(jù)梯形的對(duì)邊平行再結(jié)合一次函數(shù)的性質(zhì)求解即可.
試題解析:(1)∵拋物線過(guò)點(diǎn)A(1,0)和B(3,0)
,解得
∴此二次函數(shù)的解析式為;
(2)在中,當(dāng)x=0時(shí),y=3,所以點(diǎn)C的坐標(biāo)為(0,3)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/e/6jfd01.png" style="vertical-align:middle;" />,所以頂點(diǎn)D的坐標(biāo)為(2,-1);
(3)設(shè)CD:
∵圖象過(guò)點(diǎn)(0,3),(2,-1)
,解得
∴CD:,沿y軸向下平移3個(gè)單位長(zhǎng)度后直線m的解析式為
(4)(-1,2)或(-1.5,3).
考點(diǎn):二次函數(shù)的綜合題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,點(diǎn)P由B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;點(diǎn)Q由A出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動(dòng),速度為1cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<4),解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),PQ的垂直平分線經(jīng)過(guò)點(diǎn)B?
(2)如圖②,連接CQ.設(shè)△PQC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;

(3)如圖②,是否存在某一時(shí)刻t,使線段C Q恰好把四邊形ACPQ的面積分成1:2的兩部分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動(dòng),點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,)為圓心,以2為半徑的圓與軸交于A、B兩點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過(guò)y軸上的一個(gè)定點(diǎn);
⑵若該函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線經(jīng)過(guò)(0,-1),(3,2)兩點(diǎn).求它的解析式及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個(gè)交點(diǎn);
(2)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點(diǎn)P(m,n)為圓心,1為半徑作圓,直接寫(xiě)出:當(dāng)m取何值時(shí),x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商品的進(jìn)價(jià)為每千克40元,銷(xiāo)售單價(jià)與月銷(xiāo)售量的關(guān)系如下表(每千克售價(jià)不能高于65元):

銷(xiāo)售單價(jià)(元)
50
53
56
59
62
65
月銷(xiāo)售量(千克)
420
360
300
240
180
120
該商品以每千克50元為售價(jià),在此基礎(chǔ)上設(shè)每千克的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)每千克商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為x(x>0).

⑴△EFG的邊長(zhǎng)是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時(shí),y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案