22、有一個二次函數(shù)的圖象,三位學(xué)生分別說出了它的一些特點(diǎn).
甲:對稱軸是直線x=4;
乙:與x軸兩交點(diǎn)的橫坐標(biāo)都是整數(shù);
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個交點(diǎn)為頂點(diǎn)的三角形面積為3;
請寫出滿足上述全部特點(diǎn)的一元二次函數(shù)解析式:
y=-3(x-3)(x-5)
分析:由對稱軸是直線x=4,與x軸兩交點(diǎn)的橫坐標(biāo)都是整數(shù),可設(shè)與x軸兩交點(diǎn)坐標(biāo)為(3,0),(5,0),又因為以函數(shù)與x軸,y軸交點(diǎn)為頂點(diǎn)的三角形面積為3,可得與y軸的交點(diǎn)的坐標(biāo)為(4,3).利用交點(diǎn)式y(tǒng)=a(x-x1)(x-x2),求出解析式.
解答:解:此題答案不唯一
∵對稱軸是直線x=4,與x軸兩交點(diǎn)的橫坐標(biāo)都是整數(shù)
可設(shè)與x軸兩交點(diǎn)坐標(biāo)為(3,0),(5,0)
又因為以函數(shù)與x軸,y軸交點(diǎn)為頂點(diǎn)的三角形面積為3
可得與y軸的交點(diǎn)的坐標(biāo)為(0,3)
設(shè)解析式y(tǒng)=a(x-3)(x-5)
把點(diǎn)(4,3)代入得a=-3
∴解析式y(tǒng)=-3(x-3)(x-5),
故答案為y=-3(x-3)(x-5).
點(diǎn)評:本題主要考查用待定系數(shù)法求二次函數(shù)的解析式,此題是開放題,解題的關(guān)鍵理解題意.還要注意利用待定系數(shù)法求函數(shù)解析式,當(dāng)題目中出現(xiàn)二次函數(shù)與x軸的交點(diǎn)坐標(biāo)時,采用交點(diǎn)式比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一個二次函數(shù)的圖象,三位學(xué)生分別說出了它的一些特點(diǎn).
甲:對稱軸是直線x=4;
乙:與x軸兩交點(diǎn)的橫坐標(biāo)都是整數(shù);
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個交點(diǎn)為頂點(diǎn)的三角形面積為3;
請寫出滿足上述全部特點(diǎn)的二次函數(shù)解析式:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一個二次函數(shù)的圖象,三位學(xué)生分別說出了它的一些特點(diǎn):
甲:對稱軸是直線x=4;
乙:與x軸兩個交點(diǎn)的橫坐標(biāo)都是整數(shù);
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個交點(diǎn)為頂點(diǎn)的三角形面積為3.
請你寫出滿足上述全部特點(diǎn)的一個二次函數(shù)的表達(dá)式:
 
.(答案不惟一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一個二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特征:甲:對稱軸是x=4;乙:與x軸兩個交點(diǎn)的橫坐標(biāo)都是整數(shù);丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個點(diǎn)為頂點(diǎn)的三角形面積為3.請寫出滿足上述全部特征的一個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一個二次函數(shù)的圖象,三位學(xué)生分別說出了它的一些特點(diǎn):
甲:對稱軸是直線x=4;
乙:與x軸兩個交點(diǎn)的橫坐標(biāo)都是整數(shù);
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個交點(diǎn)為頂點(diǎn)的三角形面積為24.
請你確定滿足上述全部特點(diǎn)的一個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一個二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點(diǎn):
甲:對稱軸為直線x=3;    
乙:與x軸兩個交點(diǎn)的橫坐標(biāo)都是整數(shù);
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個點(diǎn)為頂點(diǎn)的三角形面積為4.
請你寫出滿足上述全部特點(diǎn)的一個二次函數(shù)解析式
:y=
1
2
x2-3x+4(答案不唯一).
:y=
1
2
x2-3x+4(答案不唯一).

查看答案和解析>>

同步練習(xí)冊答案