【題目】如圖,已知、、、在同一條直線上,,,則下列條件中,不能判斷的是( )
A. B. C. D.
【答案】D
【解析】
首先根據(jù)等式的性質(zhì)可得BC=EF,再根據(jù)平行線的性質(zhì)可得∠B=∠DEF,再分別添加四個選項中的條件,結(jié)合全等三角形的判定定理進行分析即可.
解:∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF,
∵AB∥DE,
∴∠B=∠DEF,
A、添加AB=DE,可利用SAS判定△ABC≌△DEF,故此選項不合題意;
B、添加∠A=∠D,可利用AAS判定△ABC≌△DEF,故此選項不合題意;
C、添加AC∥DF,可得∠ACB=∠F,可利用ASA判定△ABC≌△DEF,故此選項不合題意;
D、添加AC=DF,不能判定△ABC≌△DEF,故此選項符合題意;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,邊長為a的正方形發(fā)生形變后成為邊長為a的菱形,如果這個菱形的一組對邊之間的距離為h,我們把的值叫做這個菱形的“形變度”.例如,當(dāng)形變后的菱形是如圖2形狀(被對角線BD分成2個等邊三角形),則這個菱形的“形變度”為2:.如圖3,正方形由16個邊長為1的小正方形組成,形變后成為菱形,△AEF(A、E、F是格點)同時形變?yōu)?/span>△A′E′F′,若這個菱形的“形變度”k=,則S△A′E′F′=__
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD頂點A的坐標(biāo)為(0,4),B點在x軸上,對角線AC,BD交于點M,OM=6,則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,CD為△ABC的中線,作CO⊥AB于O,點E在CO延長線上,DE=AD,連接BE、DE.
(1)求證:四邊形BCDE為菱形;
(2)把△ABC分割成三個全等的三角形,需要兩條分割線段,若AC=6,求兩條分割線段長度的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是邊長為2的菱形,∠BAD=60°,對角線AC與BD交于點O,過點O的直線EF交AD于點E,交BC于點F.
(1)求證:△AOE≌△COF;
(2)若∠EOD=30°,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于A、C兩點,點D在⊙O上,∠A=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)若點N在⊙O上,且DN⊥AB,垂足為M,NC=10,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在“數(shù)學(xué)小論文”評比活動中,共征集到論文100篇,對論文評比的分?jǐn)?shù)(分?jǐn)?shù)為整數(shù))整理后,分組畫出頻數(shù)分布直方圖(如圖),已知從左到右5個小長方形的高的比為l:3:7:6:3,那么在這次評比中被評為優(yōu)秀的論文(分?jǐn)?shù)大于或等于80分為優(yōu)秀)有____篇.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com