用換元法解方程(x2+x)2+(x2+x)=12時(shí),如果設(shè)x2+x=y,那么原方程可變形為


  1. A.
    y2+y+12=0
  2. B.
    y2-y-12=0
  3. C.
    y2-y+12=0
  4. D.
    y2+y-12=0
D
分析:將原方程中的x2+x換成y,再移項(xiàng)即可.
解答:根據(jù)題意,得
y2+y=12,即y2+y-12=0;
故選D.
點(diǎn)評(píng):本題考查了換元法解一元二次方程.解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡(jiǎn)化,這叫換元法.換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解方程:x2+2x-
6x2+2x
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、用換元法解方程(x2+x)2+2(x2+x)-1=0,若設(shè)y=x2+x,則原方程可變形為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•廣州)用換元法解方程
5(x2-x)
x2+1
+
2(x2+1)
x2-x
=6時(shí),最適宜的做法是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:x2+2x=2;
(2)用換元法解方程:x2-x+1=
6x2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解方程
8(x2+2x)
x2-1
+
3(x2-1)
x2+2x
=11
時(shí)若設(shè)
x2-1
x2+2x
=y
,則可得到整式方程是( 。
A、3y2-11y+8=0
B、3y2+8y=11
C、8y2-11y+3=0
D、8y2+3y=11

查看答案和解析>>

同步練習(xí)冊(cè)答案