【題目】在△ABC中,BD是∠ABC的平分線,ADBD,垂足是D

1)求證:∠2=∠1+C;

2)若EDBC,∠ABD28°,求∠ADE的度數(shù).

【答案】1)見解析;(2118°

【解析】

1)如圖延長ADBCE.證明△BDA≌△BDEASA)即可解決問題.

2)求出∠AEC,再利用平行線的性質(zhì)即可解決問題.

解:(1)如圖延長ADBCE

BDAE,

∴∠BDA=∠BDE90°,

∵∠ABD=∠EBD,BDBD

∴△BDA≌△BDEASA),

BABE,∠2=∠BEA,

∵∠BEA=∠1+C,

∴∠2=∠1+C

2)∵∠ABD28°,∠BDA90°,

∴∠262°

∴∠AEB=∠262°,

∴∠AEC180°62°118°,

DEEC,

∴∠ADE=∠AEC118°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;BG=GC;AGCF;SFGC=3.其中正確結(jié)論的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究

(1)如圖①,已知正方形ABCD的邊長為4.點(diǎn)MN分別是邊BC、CD上兩點(diǎn),且BMCN,連接AMBN,交于點(diǎn)P.猜想AMBN的位置關(guān)系,并證明你的結(jié)論.

(2)如圖②,已知正方形ABCD的邊長為4.點(diǎn)MN分別從點(diǎn)BC同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)CD運(yùn)動(dòng).連接AMBN,交于點(diǎn)P,求APB周長的最大值;

問題解決

(3)如圖③,AC為邊長為2的菱形ABCD的對(duì)角線,∠ABC=60°.點(diǎn)MN分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)CA運(yùn)動(dòng).連接AMBN,交于點(diǎn)P.求APB周長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,點(diǎn)、分別是等邊、上的點(diǎn),連接、,若,求證:

(2)如圖2,在(1)問的條件下,點(diǎn)的延長線上,連接延長線于點(diǎn),.若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

12×231132×21,

13×341143×31

23×352253×32,

34×473374×43,

62×286682×26,

……

以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為數(shù)字對(duì)稱等式

1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為數(shù)字對(duì)稱等式

52×      ×25

   ×396693×   

2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,且2≤a+b≤9,寫出表示數(shù)字對(duì)稱等式一般規(guī)律的式子(含ab),并證明;

3)若(2)中ab表示一個(gè)兩位數(shù),例如a11,b22,則1122×223311113322×2211,請(qǐng)寫出表示這類數(shù)字對(duì)稱等式一般規(guī)律的式子(含a,b),并寫出a+b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=EDDF=DC,連接EF并延長交BC的延長線于點(diǎn)G

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位準(zhǔn)備組織員工到武夷山風(fēng)景區(qū)旅游,旅行社給出了如下收費(fèi)標(biāo)準(zhǔn)(如圖所示):

設(shè)參加旅游的員工人數(shù)為x人.

(1)當(dāng)25<x<40時(shí),人均費(fèi)用為   元,當(dāng)x≥40時(shí),人均費(fèi)用為   元;

(2)該單位共支付給旅行社旅游費(fèi)用27000元,請(qǐng)問這次參加旅游的員工人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).

(1)求拋物線的函數(shù)關(guān)系式;

(2)若P為線段AC上一點(diǎn),且SPCD=2SPAD,求點(diǎn)P的坐標(biāo);

(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案