【題目】《九章算術(shù)》是我國東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖2.圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)xy的系數(shù)與相應(yīng)的常數(shù)項.把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是,類似地,圖2所示的算籌圖我們可以表述為(

A. B. C. D.

【答案】D

【解析】

由圖1可得1個豎直的算籌數(shù)算1,一個橫的算籌數(shù)算10,每一橫行是一個方程,第一個數(shù)是x的系數(shù),第二個數(shù)是y的系數(shù),第三個數(shù)是相加的結(jié)果:前面的表示十位,后面的表示個位,由此可得圖2的表達式.

第一個方程x的系數(shù)為2,y的系數(shù)為1,相加的結(jié)果為11;第二個方程x的系數(shù)為4y的系數(shù)為3,相加的結(jié)果為27,所以可列方程為

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強居民節(jié)約用電意識,某市對居民用電實行“階梯收費”,具體收費標(biāo)準(zhǔn)見下表:

某居民五月份用電190千瓦時,繳納電費90元.

(1)x的值和超出部分電費單價;

(2)若該戶居民六月份所繳電費不低于75元且不超過84元,求該戶居民六月份的用電量范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上的一點,點E在BC邊上,連接AE,DE,DC,AE=CD.

(1)求證:△ABE≌△CBD;

(2)若∠BAE=15°,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)市委和市政府綠色環(huán)保,節(jié)能減排的號召,幸福商場用3300元購進甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進價、售價如下表:

進價(元/只)

售價(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場甲、乙兩種節(jié)能燈各購進了多少只?

(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD,EF相交于點O.

(1)寫出∠COE的鄰補角;

(2)分別寫出∠COE和∠BOE的對頂角;

(3)如果∠BOD60°,∠BOF90°,求∠AOF和∠FOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某部隊將在指定山區(qū)進行軍事演習(xí),為了使道路便于部隊重型車輛通過,部隊工兵連接到搶修一段長3600米道路的任務(wù),按原計劃完成總?cè)蝿?wù)的后,為了讓道路盡快投入使用,工兵連將工作效率提高了50%,一共用了10小時完成任務(wù).

1按原計劃完成總?cè)蝿?wù)的時,已搶修道路   米;

2求原計劃每小時搶修道路多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADB=ADC,則不一定能使△ABD≌△ACD的條件是(  )

A. AB=AC B. BD=CD C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= (x+2)(x﹣4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線y=﹣ x+b與拋物線的另一交點為D.

(1)若點D的橫坐標(biāo)為﹣5,求拋物線的函數(shù)表達式;
(2)若在第一象限內(nèi)的拋物線上有點P,使得以A,B,P為頂點的三角形與△ABC相似,求k的值;
(3)在(1)的條件下,設(shè)F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當(dāng)點F的坐標(biāo)是多少時,點M在整個運動過程中用時最少?

查看答案和解析>>

同步練習(xí)冊答案