【題目】三等分角大約是在公元前五世紀(jì)由古希臘人提出來(lái)的,借助如圖所示的三等分角儀能三等分任一角.這個(gè)三等分角儀由兩根有糟的棒OAOB組成.兩根棒在O點(diǎn)相連并可繞O轉(zhuǎn)動(dòng),C點(diǎn)固定,OCCDDE,點(diǎn)D,E在槽中滑動(dòng),若∠BDE84°.則∠AOB______°

【答案】28

【解析】

根據(jù)OCCDDE,可得∠O=∠ODC,∠DCE=∠DEC,根據(jù)三角形的外角性質(zhì)可知∠DCE=∠O+∠ODC2ODC,進(jìn)一步根據(jù)三角形的外角性質(zhì)可知∠BDE3ODC84°,即可求出∠ODC的度數(shù),則可求出∠AOB的度數(shù).

OCCDDE

∴∠O=∠ODC,∠DCE=∠DEC,

∴∠DCE=∠O+∠ODC2ODC,

∵∠O+∠OED3ODC=∠BDE84°,

∴∠ODC28°,

∴∠O28°,

即∠AOB28°.

故答案為:28

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某球室有三種品牌的個(gè)乒乓球,價(jià)格是789(單位:元)三種.從中隨機(jī)拿出一個(gè)球,已知(一次拿到元球)

1)求這個(gè)球價(jià)格的眾數(shù);

2)若甲組已拿走一個(gè)元球訓(xùn)練,乙組準(zhǔn)備從剩余個(gè)球中隨機(jī)拿一個(gè)訓(xùn)練.

所剩的個(gè)球價(jià)格的中位數(shù)與原來(lái)個(gè)球價(jià)格的中位數(shù)是否相同?并簡(jiǎn)要說(shuō)明理由;

乙組先隨機(jī)拿出一個(gè)球后放回,之后又隨機(jī)拿一個(gè),用列表法(如圖)求乙組兩次都拿到8元球的概率.

又拿

先拿

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),延長(zhǎng)AB到點(diǎn)D,使CD=CA,且


1)求證:是⊙O的切線.

2)分別過(guò)A、B兩點(diǎn)作直線CD的垂線,垂足分別為EF兩點(diǎn),過(guò)C點(diǎn)作AB的垂線,垂足為點(diǎn)G.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華同學(xué)將筆記本電腦水平放置在桌子上,當(dāng)是示屏的邊緣線與底板的邊緣線所在水平線的夾角為120°時(shí),感覺(jué)最舒適(如圖①).側(cè)面示意圖為圖②;使用時(shí)為了散熱,他在底板下面墊入散熱架,如圖③,點(diǎn)在同一直線上,,

1)求的長(zhǎng);

2)如圖④,墊入散熱架后,要使顯示屏的邊緣線與水平線的夾角仍保持120°,求點(diǎn)的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F將對(duì)角線AC三等分,且AC9,點(diǎn)P在正方形的邊上,則滿足PE+PF8的點(diǎn)P的個(gè)數(shù)是( 。

A.8B.6C.4D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的解析式為:,若將直線點(diǎn)旋轉(zhuǎn).如圖所示,當(dāng)直線旋轉(zhuǎn)到位置時(shí),軸交于點(diǎn),與軸交于點(diǎn);當(dāng)直線旋轉(zhuǎn)到位置時(shí),軸交于點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)直接寫出、三點(diǎn)的坐標(biāo),連接,計(jì)算的面積;

3)已知坐標(biāo)平面內(nèi)一點(diǎn),其坐標(biāo)滿足條件,當(dāng)點(diǎn)與點(diǎn)距離最小時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)O00),A(-50),B2,1),拋物線ly=-(xh21h為常數(shù))與y軸的交點(diǎn)為C

1l經(jīng)過(guò)點(diǎn)B,求它的解析式,并寫出此時(shí)l的對(duì)稱軸及頂點(diǎn)坐標(biāo):

2)設(shè)點(diǎn)C的縱坐標(biāo)為yc,求yc的最大值,此時(shí)l上有兩點(diǎn)(x1,y1),(x2y2),其中x1x2≥0,比較y1y1的大小;

3)當(dāng)線段OAl只分為兩部分,且這兩部分的比是14時(shí),求h的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織了一次防溺水、防交通事故、防食物中毒、防校園欺凌及其他各種安全意識(shí)的調(diào)查活動(dòng),了解同學(xué)們?cè)谀男┓矫娴陌踩庾R(shí)薄弱,便于今后更好地開(kāi)展安全教育活動(dòng).根據(jù)調(diào)查結(jié)果,繪制出圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

(1)本次調(diào)查的人數(shù)為_(kāi)__________,其中防校園欺凌意識(shí)薄弱的人數(shù)占_________%;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,請(qǐng)估計(jì)該校學(xué)生中防溺水意識(shí)薄弱的人數(shù);

(4)請(qǐng)你根據(jù)題中的信息,給該校的安全教育提一個(gè)合理的建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案