【題目】三角形兩邊長(zhǎng)分別是,第三邊的長(zhǎng)是一元二次方程的一個(gè)實(shí)數(shù)根,則此三角形的外接圓半徑為________

【答案】

【解析】

先解方程,根據(jù)三角形的三邊關(guān)系可知,方程的兩個(gè)解都能和已知的兩邊構(gòu)建成新的三角形,因此求此三角形的外接圓半徑時(shí),有兩種情況:第一種情況:三邊分別為6、8、10,是直角三角形,所以其斜邊就是外接圓的直徑,第二種情況:三邊分別為6、6、8,等腰三角形,其外接圓的圓心是任意兩邊垂直平分線的交點(diǎn),確定其圓心,利用勾股定理列方程可求其半徑.

x216x+60=0,

(x10)(x6)=0,

x=106,

當(dāng)?shù)谌厼?/span>10時(shí),因?yàn)?/span>

∴此三角形是直角三角形,如圖1,

此三角形的外接圓的直徑為最大邊10,

則此三角形的外接圓半徑為5,

當(dāng)?shù)谌厼?/span>6時(shí),如圖2,

AADBC,垂足為D,AC的垂直平分線EF,ACE,ADF,AF=FC,

AB=AC=6,

ADBC的垂直平分線,

FABC外接圓的圓心,FC為外接圓的半徑,

由勾股定理得:

設(shè)FC=x,AF=x,

由勾股定理得:

x=,

綜上所述,則此三角形的外接圓半徑為5.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直線L1經(jīng)過點(diǎn)(0,2),L2經(jīng)過點(diǎn)(2,1),且L1L2關(guān)于x軸對(duì)稱,則L1L2的交點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在寧波慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖。

(1)50名同學(xué)捐款的眾數(shù)為___元,中位數(shù)為___元;

(2)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為開心大轉(zhuǎn)盤,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母A,則收費(fèi)2元,若指針指向字母B,則獎(jiǎng)勵(lì)3元;若指針指向字母C,則獎(jiǎng)勵(lì)1元.一天,前來尋開心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定顧客消費(fèi)元以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅、黃或綠色區(qū)域,顧客就可以分別獲得元,元、元的購物券(轉(zhuǎn)盤被等分成個(gè)扇形).

顧客張吉祥消費(fèi)元,他獲得購物券的概率是多少?

他得到元,元、元購物券的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACBC,將ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EFAB、AC邊分別交于點(diǎn)E、點(diǎn)F,如果折疊后CDFBDE均為等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)CBA的延長(zhǎng)線上,CA=AO,點(diǎn)D⊙O上,∠ABD=30°

求證:CD⊙O的切線;

若點(diǎn)P在直線AB上,⊙P⊙O外切于點(diǎn)B,與直線CD相切于點(diǎn)E,設(shè)⊙O⊙P的半徑分別為rR,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2015年投入教育經(jīng)費(fèi)2900萬元,2017年投入教育經(jīng)費(fèi)3509萬元.

1)求2015年至2017年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;

2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國(guó)民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國(guó)民生產(chǎn)總值的情況,該地區(qū)到2019年需投入教育經(jīng)費(fèi)4250萬元.如果按(1)中教育經(jīng)費(fèi)投入的增長(zhǎng)率,到2019年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬元?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1C2C3,…分別在直線ykx+bk>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則Bn的坐標(biāo)是( 。

A.(2n﹣1,2n1B.(2n1+1,2n1

C.(2n﹣1,2n﹣1)D.(2n﹣1,n

查看答案和解析>>

同步練習(xí)冊(cè)答案