【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
【答案】
(1)解:MN是⊙O切線.
理由:連接OC.
∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,
∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切線
(2)解:由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在RT△BCO中,OC=OA=4,∠BCO=30°,
∴BO= OC=2,BC=2
∴S陰=S扇形OAC﹣S△OAC= ﹣ = ﹣4 .
【解析】(1)MN是⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據(jù)S陰=S扇形OAC﹣S△OAC計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張老師駕車(chē)從家出發(fā)到植物園賞花,勻速行駛一段時(shí)間后,途中遇到堵車(chē)原地等待一會(huì)兒,然后加速行駛,到達(dá)植物園,參觀結(jié)束后,張老師駕車(chē)一路勻速返回,其中x表示汽車(chē)從家出發(fā)后所用時(shí)間,y表示車(chē)離家的距離,下面能反映y與x的函數(shù)關(guān)系式的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊AB的四等分點(diǎn),DE∥AC,DF∥BC,AC=8,BC=12,求四邊形DECF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AE⊥FE,垂足為E,且E是DC的中點(diǎn).
(1)如圖①,如果FC⊥DC,AD⊥DC,垂足分別為C,D,且AD=DC,判斷AE是∠FAD的角平分線嗎?(不必說(shuō)明理由)
(2)如圖②,如果(1)中的條件“AD=DC”去掉,其余條件不變,(1)中的結(jié)論仍成立嗎?請(qǐng)說(shuō)明理由;
(3)如圖③,如果(1)中的條件改為“AD∥FC”,(1)中的結(jié)論仍成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱軸x=﹣1,給出下列結(jié)果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
則正確的結(jié)論是( )
A.①②③④
B.②④⑤
C.②③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格出售,平均每天銷(xiāo)售90箱,價(jià)格每提高1元,平均每天少銷(xiāo)售3箱.
(1)求平均每天銷(xiāo)售量y(箱)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com