如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心,
1
2
AC長(zhǎng)為半徑作⊙O,交BC于E,過(guò)O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是
AE
的中點(diǎn);
(2)求證:∠DAO=∠B+∠BAD;
(3)若
S△CEF
S△OCD
 =
1
2
,且AC=4,求CF的長(zhǎng).
分析:(1)判斷出OD⊥AE,則利用垂徑定理可得出點(diǎn)D是
AE
的中點(diǎn);
(2)延長(zhǎng)AD交BC于H,利用外角可得出∠AHC=∠B+∠BAD,再由OA=OD,可得出結(jié)論.
(3)根據(jù)OA=OC可得出△OCD和△ACD的面積比,從而結(jié)合
S△CEF
S△OCD
 =
1
2
可得出△CEF和△ACD的面積比,判斷出△ACD∽△FCE,利用面積比等于相似比的平方即可解出CF的值.
解答:證明:(1)∵AC是⊙O的直徑,
∴AE⊥BC,
∵OD∥BC
∴AE⊥OD,
∴D是
AE
的中點(diǎn)(垂徑定理).
(2)如圖,延長(zhǎng)AD交BC于H,

則∠ADO=∠AHC,
∵∠AHC=∠B+∠BAD,
∴∠ADO=∠B+∠BAD,
又∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAO=∠B+∠BAD.
(3)∵AO=OC,
S△OCD=
1
2
S△ACD
,
S△CEF
S△OCD
=
1
2
,
S△CEF
S△ACD
=
1
4
,
∵∠ACD=∠FCE,∠ADC=∠FEC=90°,
∴△ACD∽△FCE,
S△CEF
S△ACD
=(
CF
AC
)
2
,即:
1
4
=(
CF
4
)
2
,
∴CF=2.
點(diǎn)評(píng):此題屬于圓的綜合題,涉及了垂徑定理、三角形的外角、相似三角形的判定與性質(zhì),要求我們掌握底邊在一條直線(xiàn)上且高相等的三角形的面積之比等于底邊之比,相似三角形的面積之比等于相似比的平方,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點(diǎn),且cosA=
3
3
,則S△ADE:S四邊形DBCE的值為( 。
A、
1
2
B、
1
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個(gè)頂點(diǎn)為頂點(diǎn)作矩形,第三個(gè)頂點(diǎn)落在以這兩個(gè)頂點(diǎn)所確定的對(duì)邊上,這樣可以作三個(gè)面積相等的矩形,請(qǐng)問(wèn)這三個(gè)矩形的周長(zhǎng)大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長(zhǎng))答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線(xiàn)DC上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到PD=BD時(shí),連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時(shí),必要時(shí)可直接運(yùn)用(1)的結(jié)論進(jìn)行推理與解答]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,∠ABC的平分線(xiàn)交AC于點(diǎn)D,AB邊上的高CE交BD于點(diǎn)M,過(guò)點(diǎn)M作BC的垂線(xiàn)段MN,若EC=4,∠BCE=45°,則MN=
 
(結(jié)果保留三位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線(xiàn)交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn).則BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案