如圖,已知ABC三點(diǎn)在圓O上,連接ABCO,如果∠AOC=140°,則∠B的度數(shù)為
70°或110°
70°或110°
分析:分類討論:當(dāng)B在AB′C弧上,根據(jù)圓周角定理可得到∠B′=70°;當(dāng)B在AC弧上,根據(jù)圓內(nèi)接四邊形的性質(zhì)可得到∠B=110°.
解答:解:當(dāng)B在AB′C弧上,如圖,
則∠B′=
1
2
∠AOC=
1
2
×140°=70°;
當(dāng)B在AC弧上,如圖,
則∠B=180°-∠B′=110°,
所以∠B的度數(shù)為70°或110°.
故答案為70°或110°.
點(diǎn)評(píng):本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.也考查了圓內(nèi)接四邊形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(1,2),(-2,3),(-1,0),把它們的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來(lái)的2倍,得到點(diǎn)A′,B′,C′.下列說(shuō)法正確的是( 。
A、△A′B′C′與△ABC是位似圖形,位似中心是點(diǎn)(1,0)B、△A′B′C′與△ABC是位似圖形,位似中心是點(diǎn)(0,0)C、△A′B′C′與△ABC是相似圖形,但不是位似圖形D、△A′B′C′與△ABC不是相似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC三頂點(diǎn)在⊙O上,D為
BC
的中點(diǎn),AD與BC相交于點(diǎn)E,AC的延長(zhǎng)線交過(guò)C、D、E三點(diǎn)的圓⊙O1于點(diǎn)F.
(1)求證:∠BAD=∠DFE;
(2)求證:△AEC∽△FED;
(3)AB=AD是否成立?若成立則證明之,若不成立,則請(qǐng)你增加一個(gè)條件使其成立,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為:A(-3,2)、B(-3,0)、C(0,2),
①寫出A、B、C關(guān)于y軸對(duì)稱的對(duì)稱點(diǎn)A′、B′、C′的坐標(biāo);
②作出△A′B′C′;
③求△BCB′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3),B(-6,0),C(-1,0)
(1)直接寫出A點(diǎn)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是
(2,3)
(2,3)

(2)將△ABC向右平移三個(gè)單位后,再關(guān)于x軸對(duì)稱得△A′B′C′,畫出圖形,且A′的坐標(biāo)為
(1,-3)
(1,-3)

(3)若△DBC與△ABC全等,D不與A重合,則D點(diǎn)的坐標(biāo)為
(-5,3),(-2,-3),(-5,-3)
(-5,3),(-2,-3),(-5,-3)

查看答案和解析>>

同步練習(xí)冊(cè)答案