【題目】如圖,AB∥CD,且∠1=20°,∠2=45°+α,∠3=60°-α,∠4=40°-α,∠5=30°.則α的值為( )
A. 10° B. 15° C. 20° D. 25°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“均衡教育大檢查”,縣委縣府對通往某偏遠(yuǎn)學(xué)校的一段全長為1200 米的道路進(jìn)行了改造,鋪設(shè)草油路面.鋪設(shè)400 米后,為了盡快完成道路改造,后來每天的工作效率比原計劃提高25%,結(jié)果共用13天完成道路改造任務(wù).
(1)求原計劃每天鋪設(shè)路面多少米;
(2)若承包商原來每天支付工人工資為1500元,提高工作效率后每天支付給工人的工資增長了20%,完成整個工程后承包商共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日在天安門廣場舉行的國慶慶;顒又校瑓⒓尤藬(shù)約為150000人,用科學(xué)記數(shù)法表示這個人數(shù)是_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,∠ABC與∠ACB的平分線交于點I.根據(jù)下列條件,求∠BIC的
度數(shù)。
(1)若∠ABC=60°,∠ACB=70°,則∠BIC=
(2)若∠ABC+∠ACB=130°,則∠BIC=
(3)若∠A=50°,則∠BIC=
(4)若∠A=110°,則∠BIC=
(5)從上述計算中,我們能發(fā)現(xiàn)已知∠A,求∠BIC的公式是:∠BIC= .
(6)如圖②,BP,CP分別是∠ABC與∠ACB的外角平分線,交于點P.
若已知∠A,則求∠BPC的公式是:∠BPC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學(xué)式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點B、C、E三點在同一條直線上,CD平分∠ACE,∠DBM=∠DAN,DM⊥BE于M,DN⊥AC于N.(1)求證:△BDM≌△ADN ;(2)若AC=2,BC=1,求CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線,直線與直線、分別相交于C、D兩點.
(1)如圖a,有一動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中,是否始終具有∠3+∠1=∠2這一關(guān)系,為什么?
(2)如圖b,當(dāng)動點P線段CD之外運動(不與C、D兩點重合),問上述結(jié)論是否成立?若不成立,試寫出新的結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是( 。
A. AD=AE B. AB=AC C. BD=AE D. AD=CE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com