已知二次函數(shù)y=ax2+bx+c中,其函數(shù)值y與自變量x之間的部分對應(yīng)值如表所示:
x1234
y4114
點A(x1,y1)、B(x2,y2)在函數(shù)的圖象上,則當1<x1<2,3<x2<4時,y1與y2的大小關(guān)系是   
【答案】分析:先設(shè)該二次函數(shù)的解析式為y=ax2+bx+c(a≠0),把x=0時y=4;x=1時y=1;x=2時y=0代入函數(shù)解析式,求出a、b、c的值,進而得出拋物線的解析式,再根據(jù)拋物線的對稱軸方程求出其對稱軸,根據(jù)二次函數(shù)的增減性即可判斷出y1與y2的大小關(guān)系.
解答:解:設(shè)該二次函數(shù)的解析式為y=ax2+bx+c(a≠0),
∵x=0時y=4;x=1時y=1;x=2時y=0,
,
解得,,
∴此拋物線的解析式為:y=x2-4x+4,
∴拋物線開口向上,對稱軸x=-=2,
∴可知拋物線頂點為(2,0),
∵1<x1<2,3<x2<4,
∴y1<y2
故答案為:y1<y2
點評:本題考查的是二次函數(shù)的性質(zhì)及用待定系數(shù)法求二次函數(shù)的解析式,根據(jù)題意求出二次函數(shù)的解析式及對稱軸方程是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案