【題目】如圖,在ABC中,ADBC邊上的高,將ABD沿AD折疊得到AED,點E落在CD上,∠B=50°,∠C=30°

1)填空:∠BAD= 度;

2)求∠CAE的度數(shù).

【答案】140;(220°

【解析】

1)直接根據三角形內角和定理求出∠BAD的度數(shù);

2)先根據圖形折疊的性質求出∠AED的度數(shù),再由三角形外角的性質即可得出結論.

1)∵ADBC邊上的高,∠B=50°,

∴∠BAD=180°-90°-50°=40°

故答案為:40;

2)∵△AED是由ABD折疊得到,

∴∠AED=B=50°,

∵∠AEDACE的外角,

∴∠AED=CAE+C,

∴∠CAE=AED-C=50°-30°=20°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)畫出ABC關于原點O成中心對稱的A1B1C1;

(2)寫出A1B1C1的頂點坐標

(3)求出A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點POA上一動點,當PC+PD最小時,點P的坐標為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據正切函數(shù),可得AH的長,根據勾股定理,可得AO的長,根據三角形的周長,可得答案;

2)根據待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5,

△AHO的周長=AO+AH+OH=3+4+5=12

2)將A點坐標代入y=k≠0),得

k=-4×3=-12

反比例函數(shù)的解析式為y=;

y=-2時,-2=,解得x=6,即B6,-2).

AB點坐標代入y=ax+b,得

,

解得

一次函數(shù)的解析式為y=-x+1

考點:反比例函數(shù)與一次函數(shù)的交點問題.

型】解答
束】
23

【題目】如圖,點A,B,C表示某旅游景區(qū)三個纜車站的位置,線段AB,BC表示連接纜車站的鋼纜,已知A,B,C三點在同一鉛直平面內,它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車線路,需要從A到C直線架設一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)3()()();

(2)25.7(7.3)(13.7)7.3;

(3)(2.125)()()(3.2)

(4)(0.8)6.4(9.2)3.6(1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網格中,每個小正方形的邊長為1,網格中有一個格點ABC(即三角形的頂點都在格點上)

1)在圖中作出ABC關于直線1對稱的A1B1C1;(要求:AA1、BB1、CC1相對應);

2)在第(1)問的結果下,連結BB1,CC1,求四邊形BB1C1C的面積;

3)在圖中作出ABC關于點C成中心對稱的A2CB2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,AEEF為折痕,∠BAE30°,BE1,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則EC的長為( 。

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校獎勵學生,初一獲獎學生中,有一人獲獎品3件,其余每人獲獎品7件;初二獲獎學生中,有一人獲獎品4件,其余每人獲獎品9件.如果兩個年級獲獎人數(shù)不等,但獎品數(shù)目相等,且每個年級獎品數(shù)大于50而不超過100,那么兩個年級獲獎學生共有_____人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1.若OCBA,AOC=36°,則(

A.點BAO的距離為sin54°

B.點BAO的距離為tan36°

C.點AOC的距離為sin36°sin54°

D.點AOC的距離為cos36°sin54°

查看答案和解析>>

同步練習冊答案