【題目】如圖,在ABC中,ABAC,點E在邊BC上移動(E不與點BC重合),滿足∠DEF=∠C,且點D、F分別在邊AB、AC上.

1)求證:BDE∽△CEF;

2)當點E移動到BC的中點時,求證:DE平分∠BDF.

【答案】1)證明見詳解;(2)證明見詳解.

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到∠B=C,根據(jù)三角形的內(nèi)角和和平角的定義得到∠BDE=CEF,于是得到結(jié)論;

2)由(1)可得,根據(jù)點EBC的中點,則可化為,即可證:△DEF∽△ECF,則有△BDE∽△EDF,∠BDE=EDF,可得DE平分∠BDF

解:(1)∵AB=AC,
∴∠B=C=DEF
∵∠BDE=180°-B-DEB,
CEF=180°-DEF-DEB,

∴∠BDE=CEF
∴△BDE∽△CEF;

2)∵△BDE∽△CEF
,

∵點EBC的中點,
BE=CE,

∵∠DEF=B=C
∴△DEF∽△ECF,

∴△BDE∽△EDF

∴∠BDE=EDF,
DE平分∠BDF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個不等實根x1、x2

1)求實數(shù)k的取值范圍

2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2-2(k-1)x+k2 =0有兩個實數(shù)根x1.x2.

(1)求實 數(shù)k的取值范圍;

(2)若(x1+1)(x2+1)=2,試求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F

1)證明:DF是⊙O的切線;

2)若AC3AEFC6,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2,AD=4,M點是BC的中點,A為圓心,AB為半徑的圓交AD于點E.點P在弧BE上運動,則PM+DP的最小值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20/件,試營銷階段發(fā)現(xiàn):當銷售價格為25/件時,每天的銷售量為250件,每件銷售價格每上漲1元,每天的銷售量就減少10件。

1)當銷售價格上漲時,請寫出每天的銷售量(件)與銷售價格(元/件)之間的函數(shù)關(guān)系式;

2)如果要求每天的銷售量不少于10件,且每件文具的利潤至少為25元,問當銷售價格定為多少時,該文具每天的銷售利潤最大,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂維修人員為更換管道,需確定管道圓形截面的半徑如圖是水平放置的破裂管道有水部分的截面

(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);

(2)若這個輸水管道有水部分的水面寬AB=8 cm,水面最深地方的高度為2 cm,求這個圓形截面的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于二次函數(shù)的圖象與性質(zhì),下列結(jié)論錯誤的是( )

A.x=-2時,函數(shù)有最大值-3

B.x<-2時,yx的增大而增大

C.拋物線可由經(jīng)過平移得到

D.該函數(shù)的圖象與x軸有兩個交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈,求兩盞景觀燈之間的水平距離(提示:請建立平面直角坐標系后,再作答).

查看答案和解析>>

同步練習冊答案