精英家教網 > 初中數學 > 題目詳情
(2009•臨沂)如圖,AC是⊙O的直徑,PA,PB是⊙O的切線,A,B為切點,AB=6,PA=5.
求:(1)⊙O的半徑;
(2)sin∠BAC的值.

【答案】分析:連OB,OP,由切線性質知△OBP和△OAP為直角三角形且全等,從而知道PO垂直平分AB.利用勾股定理,求出PD,在△OAD中求OA.
解答:解:(1)連接PO,OB,設PO交AB于D.
∵PA,PB是⊙O的切線,
∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.
∴AD=BD=3,PO⊥AB.
∴PD=
在Rt△PAD和Rt△POA中,
=tan∠APD,
∴AO===
即⊙O的半徑為

(2)在Rt△AOD中,
DO=,
∴sin∠BAC=
點評:本題考查了圓的切線性質及解直角三角形的知識.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年浙江省溫州市永嘉縣中考數學模擬試卷(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省泰安市寧陽縣中考數學模擬試卷(9)(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省臨沂市中考數學試卷(樣卷)(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省濟南市歷城區(qū)中考數學三模試卷(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省濟南市初中學業(yè)水平考試數學模擬試卷(2)(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

同步練習冊答案