【題目】如圖,正方形中,是對(duì)角線上一個(gè)動(dòng)點(diǎn),連結(jié),過(guò)作,,
,分別為垂足.
(1)求證:;
(2)①寫出、、三條線段滿足的等量關(guān)系,并證明;②求當(dāng),時(shí),的長(zhǎng)
【答案】(1)見(jiàn)解析;(2)①GE2+GF2=AG2,證明見(jiàn)解析;②的長(zhǎng)為或.
【解析】
(1)根據(jù)正方形的性質(zhì)得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,結(jié)合AB=BD即可得出結(jié)論;
(2)①連接CG,由SAS證明△ABG≌△CBG,得出AG=CG,證出四邊形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;
②設(shè)GE=CF=x,則GF=BF=6x,由①中結(jié)論得出方程求出CF=1或CF=5,再分情況討論,由勾股定理求出BG即可.
解:(1)∵四邊形ABCD為正方形,
∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,
∴△ABD是等腰直角三角形,
∴AB=BD,
∵GE⊥CD,GF⊥BC,
∴△DGE和△BGF是等腰直角三角形,
∴GE=DG,GF=BG,
∴GE+GF=(DG+BG)=BD,
∴GE+GF=AB;
(2)①GE2+GF2=AG2,
證明:連接CG,如圖所示:
在△ABG和△CBG中,,
∴△ABG≌△CBG(SAS),
∴AG=CG,
∵GE⊥CD,GF⊥BC,∠BCD=90°,
∴四邊形EGFC是矩形,
∴CE=GF,
∵GE2+CE2=CG2,
∴GE2+GF2=AG2;
②設(shè)GE=CF=x,則GF=BF=6x,
∵GE2+GF2=AG2,
∴,
解得:x=1或x=5,
當(dāng)x=1時(shí),則BFGF=5,
∴BG=,
當(dāng)x=5時(shí),則BF=GF=1,
∴BG=,
綜上,的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑作⊙O,交AC于點(diǎn)D,連接DB,過(guò)點(diǎn)D作DE⊥BC,垂足為E.
(1)求證:AD=CD.
(2)求證:DE為⊙O的切線.
(3)若∠C=60°,DE=,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象與 y 軸交于點(diǎn)(0,﹣2),且過(guò)點(diǎn) A(﹣1,1)和 B(4,6).
(1)求二次函數(shù)的解析式,并寫出其圖象的頂點(diǎn)坐標(biāo);
(2)當(dāng) 2≤x≤5 時(shí),求二次函數(shù)的函數(shù)值 y 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過(guò)點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司營(yíng)銷A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售A種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系。
當(dāng)x=1時(shí),y=1.4;當(dāng)x=3時(shí),y=3.6。
信息2:銷售B種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系。
根據(jù)以上信息,解答下列問(wèn)題:
(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)A,B兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論,①ab<0,②b2﹣4ac>0,③4b+c<0,④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2,⑤當(dāng)﹣3≤x≤1時(shí),y≥0,其中正確的結(jié)論是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,∠C=90°,將△ABC 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°,得到△DEC(其中點(diǎn) D、E 分別是 A、B 兩點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)).
(1)請(qǐng)畫(huà)出旋轉(zhuǎn)后的△DEC;
(2)試判斷 DE 與 AB 的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com