【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經過原點的一條直線l將這八個正方形分成面積相等的兩部分,則該直線l的解析式為( )
A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x
科目:初中數(shù)學 來源: 題型:
【題目】某校為了增強學生對中華優(yōu)秀傳統(tǒng)文化的理解,決定購買一批相關的書籍.據了解,經典著作的單價比傳說故事的單價多6元,用10000元購買經典著作與用7000元購買傳說故事的本數(shù)相同,這兩類書籍的單價各是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積為( )
A. 6B. 12C. 4D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖: 下面是一道證明題,劉老師給同學們講解了思路,請將證明過程和每一步的理由補充完整.
已知:∠A=∠E,AD∥BE,求證:∠1=∠2
證明:AD∥BE(已知)
∠A= ( )
∠A=∠E ( 已知 )
∠E= (等量代換)
DE∥AC( )
∠1=∠2( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D為等腰直角△ABC內一點,∠CAD=∠CBD=15o,E為AD延長線上的一點,且CE=CA,若點M在DE上,且DC=DM。則下列結論:①∠ADB=120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分AB;④ME=BD;正確的有( )
A. 1個B. 4個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[感知發(fā)現(xiàn)]:如圖,是一個“豬手”圖,AB∥CD,點E在兩平行線之間,連接BE,DE ,我們發(fā)現(xiàn):∠E=∠B+∠D
證明如下:過E點作EF∥AB.
∠B=∠1(兩直線平行,內錯角相等.)
又AB∥CD(已知)
CD∥EF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.)
∠2=∠D(兩直線平行,內錯角相等.)
∠1+∠2=∠B+∠D(等式的性質1.)
即:∠E=∠B+∠D
[類比探究]:如圖是一個“子彈頭”圖,AB∥CD,點E在兩平行線之間,連接BE,DE.試探究∠E+∠B+∠D=360°.寫出證明過程.
[創(chuàng)新應用]:
(1).如圖一,是兩塊三角板按如圖所示的方式擺放,使直角頂點重合,斜邊平行,請直接寫出∠1的度數(shù).
(2).如圖二,將一個長方形ABCD按如圖的虛線剪下,使∠1=120,∠FEQ=90°. 請直接寫出∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某開發(fā)區(qū)有一塊四邊形的空地,如圖所示,現(xiàn)計劃在空地上種植草皮,經測量,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為( 。
A.120°B.108°C.126°D.114°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點P是射線AM上的動點(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于點C、D.
(1)求∠CBD的度數(shù);
(2)當點P運動時,∠APB∶∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律.
(3)當點P運動到使∠ACB=∠ABD時,求∠ABC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com