【題目】ABC是等邊三角形,點(diǎn)EF分別為射線AC、射線CB上兩點(diǎn),CE=BF,直線EB、AF交于點(diǎn)D.

1)當(dāng)E、F在邊ACBC上時(shí)如圖,求證:△ABF≌△BCE.

2)當(dāng)EAC延長(zhǎng)線上時(shí),如圖,AC=10,SABC=25,EGBCG,EHABHHE=8,EG= .

3EF分別在AC、CB延長(zhǎng)線上時(shí),如圖,BE上有一點(diǎn)PCP=BD,CPB是銳角,求證:BP=AD.

【答案】1)見(jiàn)解析;(2;(3)見(jiàn)解析.

【解析】

1△ABC是等邊三角形,由AB=BC,∠ABF=∠BCE=60°,證明全等即可;

2)記BGHE交于點(diǎn)O,先求出∠CEO=30°,即可求出AE的長(zhǎng),從而求出EG;

3)先證明△ABF≌△BCE,再由BD=CP∠CPB為銳角,證明△ABD≌△BCP即可.

1)∵△ABC是等邊三角形,

AB=BC,∠ABF=∠BCE=60°

△ABF△ADF

△ABF≌△BCESAS);

2)記BGHE交于點(diǎn)O,

∵△ABC為等邊三角形,

∠ABC=∠ACB=60°,

EH⊥AB,EG⊥BG,

∴∠BHE=∠EGC=90°,

∠EOG=∠BOH=30°,

∠CEO=30°,∠CEG=30°,

HE=8

AH=8,

∴AE=2AH=16,

AC=10,

CE=6,

CG=3

EG=;

3)∵△ABC為等邊三角形,

∴AB=BC,∠ABC=∠ACB=60°

∴∠ABF=∠BCE=120°,

△ABF和△BCE

∴△ABF≌△BCESAS),

AF=BE,∠AFB=∠BEC,∠FAB=∠EBC

∠FBD=∠CBE,

∠FDB=∠BCE=120°,

∠ADB=60°,

△ABF≌△BCESAS),BD=CP,∠CPB為銳角,

∴∠CPB=∠BDA=60°,

△ABD和△BCP

∴△ABD≌△BCPAAS),

BP=AD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)為(a,0),(0,b),且滿足(a42+0,現(xiàn)將OA平移到BC的位置,連接AC,點(diǎn)P從點(diǎn)B出發(fā),沿BCCA運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)求出ab的值,并寫(xiě)出點(diǎn)C的坐標(biāo);

2)求點(diǎn)P在運(yùn)動(dòng)過(guò)程中的坐標(biāo)(用含t的式子表示).

3)點(diǎn)Q以每秒3.5個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),在AO間往返運(yùn)動(dòng),(兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A停止時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)過(guò)程中,直接寫(xiě)出當(dāng)PQOB時(shí),點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】郵遞員騎摩托車(chē)從郵局出發(fā),先向南騎行2km到達(dá)A村,繼續(xù)向南騎行3km到達(dá)B 村,然后向北騎行9kmC村,最后回到郵局.

(1)以郵局為原點(diǎn),以向北方向?yàn)檎较颍?/span>1個(gè)單位長(zhǎng)度表示1km,請(qǐng)你在數(shù)軸上表示出A、B、C三個(gè)村莊的位置;

(2)C村離A村有多遠(yuǎn)?

(3)若摩托車(chē)每100km耗油3升,這趟路共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(15)、B(1,0)、C(4,3)

1)直接寫(xiě)出△ABC的面積為_________

2)在圖形中作出△ABC關(guān)于x軸的對(duì)稱(chēng)圖形△A1B1C1

3)若△DAB與△CAB全等(D點(diǎn)不與C點(diǎn)重合),則點(diǎn)D的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)直角三角形ACB(ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.

(1)求證:CF=DG;

(2)求出FHG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD 中,對(duì)角線 AC BD 相交于點(diǎn) O ,點(diǎn) E F 分別為 OB , OD 的中點(diǎn),延長(zhǎng) AE G ,使 EG AE ,連接 CG

1)求證: ABE≌△CDF ;

2)當(dāng) AB AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.

(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);

(2)若OEF的面積為9,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y (m為常數(shù),且m≠5)

(1)若在其圖象的每個(gè)分支上,yx的增大而增大,求m的取值范圍;

(2)若其圖象與一次函數(shù)y=-x1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一塊三角板放在直角坐標(biāo)系第一象限內(nèi),其中30°角的頂點(diǎn)A落在y軸上,直角頂點(diǎn)C落在x軸的(,0)處,∠ACO=60°,點(diǎn)DAB邊上中點(diǎn),將ABC沿x軸向右平移,當(dāng)點(diǎn)A落在直線y=x3上時(shí),線段CD掃過(guò)的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案