【題目】△ABC是等邊三角形,點(diǎn)E、F分別為射線AC、射線CB上兩點(diǎn),CE=BF,直線EB、AF交于點(diǎn)D.
(1)當(dāng)E、F在邊AC、BC上時(shí)如圖,求證:△ABF≌△BCE.
(2)當(dāng)E在AC延長(zhǎng)線上時(shí),如圖,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分別在AC、CB延長(zhǎng)線上時(shí),如圖,BE上有一點(diǎn)P,CP=BD,∠CPB是銳角,求證:BP=AD.
【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.
【解析】
(1)△ABC是等邊三角形,由AB=BC,∠ABF=∠BCE=60°,證明全等即可;
(2)記BG,HE交于點(diǎn)O,先求出∠CEO=30°,即可求出AE的長(zhǎng),從而求出EG;
(3)先證明△ABF≌△BCE,再由BD=CP,∠CPB為銳角,證明△ABD≌△BCP即可.
(1)∵△ABC是等邊三角形,
∴AB=BC,∠ABF=∠BCE=60°,
在△ABF和△ADF中
∴△ABF≌△BCE(SAS);
(2)記BG,HE交于點(diǎn)O,
∵△ABC為等邊三角形,
∴∠ABC=∠ACB=60°,
∵EH⊥AB,EG⊥BG,
∴∠BHE=∠EGC=90°,
∴∠EOG=∠BOH=30°,
∴∠CEO=30°,∠CEG=30°,
∵HE=8,
∴AH=8,
∴AE=2AH=16,
∵AC=10,
∴CE=6,
∴CG=3,
∴EG=;
(3)∵△ABC為等邊三角形,
∴AB=BC,∠ABC=∠ACB=60°,
∴∠ABF=∠BCE=120°,
在△ABF和△BCE中
∴△ABF≌△BCE(SAS),
∴AF=BE,∠AFB=∠BEC,∠FAB=∠EBC,
∵∠FBD=∠CBE,
∴∠FDB=∠BCE=120°,
∴∠ADB=60°,
∵△ABF≌△BCE(SAS),BD=CP,∠CPB為銳角,
∴∠CPB=∠BDA=60°,
在△ABD和△BCP中
∴△ABD≌△BCP(AAS),
∴BP=AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)為(a,0),(0,b),且滿足(a﹣4)2+=0,現(xiàn)將OA平移到BC的位置,連接AC,點(diǎn)P從點(diǎn)B出發(fā),沿BC﹣CA運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求出a和b的值,并寫(xiě)出點(diǎn)C的坐標(biāo);
(2)求點(diǎn)P在運(yùn)動(dòng)過(guò)程中的坐標(biāo)(用含t的式子表示).
(3)點(diǎn)Q以每秒3.5個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),在AO間往返運(yùn)動(dòng),(兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A停止時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)過(guò)程中,直接寫(xiě)出當(dāng)PQ∥OB時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郵遞員騎摩托車(chē)從郵局出發(fā),先向南騎行2km到達(dá)A村,繼續(xù)向南騎行3km到達(dá)B 村,然后向北騎行9km到C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向北方向?yàn)檎较颍?/span>1個(gè)單位長(zhǎng)度表示1km,請(qǐng)你在數(shù)軸上表示出A、B、C三個(gè)村莊的位置;
(2)C村離A村有多遠(yuǎn)?
(3)若摩托車(chē)每100km耗油3升,這趟路共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(-1,5)、B(-1,0)、C(-4,3)
(1)直接寫(xiě)出△ABC的面積為_________
(2)在圖形中作出△ABC關(guān)于x軸的對(duì)稱(chēng)圖形△A1B1C1
(3)若△DAB與△CAB全等(D點(diǎn)不與C點(diǎn)重合),則點(diǎn)D的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一個(gè)直角三角形ACB(∠ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD 中,對(duì)角線 AC 與 BD 相交于點(diǎn) O ,點(diǎn) E , F 分別為 OB , OD 的中點(diǎn),延長(zhǎng) AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.
(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);
(2)若△OEF的面積為9,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個(gè)分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=-x+1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一塊三角板放在直角坐標(biāo)系第一象限內(nèi),其中30°角的頂點(diǎn)A落在y軸上,直角頂點(diǎn)C落在x軸的(,0)處,∠ACO=60°,點(diǎn)D為AB邊上中點(diǎn),將△ABC沿x軸向右平移,當(dāng)點(diǎn)A落在直線y=x﹣3上時(shí),線段CD掃過(guò)的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com