在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為        

試題分析:先求證四邊形AFPE是矩形,再根據(jù)直線外一點到直線上任一點的距離,垂線段最短,利用相似三角形對應邊成比例即可求得AP最短時的長,然后即可求出AM最短時的長.
在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四邊形AFPE是矩形,
∴EF=AP.
∵M是EF的中點,
∴AM=AP,
根據(jù)直線外一點到直線上任一點的距離,垂線段最短,
即AP⊥BC時,AP最短,同樣AM也最短,
∴當AP⊥BC時,△ABP∽△CBA,

,
∴AP最短時,AP=4.8
∴當AM最短時,AM=AF=2.4.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:計算題

已知: ,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

【探究發(fā)現(xiàn)】
按圖中方式將大小不同的兩個正方形放在一起,分別求出陰影部分(⊿ACF)的面積。(單位:厘米,陰影部分的面積依次用S1、S2、S3表示)
1.S1=          cm2;     S2=          cm2;          S3=          cm2.
2.歸納總結你的發(fā)現(xiàn):

【推理反思】
按圖中方式將大小不同的兩個正方形放在一起,設小正方形的邊長是bcm,大正方形的邊長是acm,求:陰影部分(⊿ACF)的面積。

【應用拓展】
1.按上圖方式將大小不同的兩個正方形放在一起,若大正方形的面積是80cm2,則圖中陰影三角形的面積是          cm2.
2.如圖(1),C是線段AB上任意一點,分別以AC、BC為邊在線段AB同側構造等邊三角形⊿ACD和等邊三角形⊿CBE,若⊿CBE的邊長是1cm,則圖中陰影三角形的面積是                        cm2.
3.如圖(2),菱形ABCD和菱形ECGF的邊長分別為2和3,∠A=120°,則圖中陰影部分的面積是   

(1)                      (2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線l分別與x軸、y軸交于A、B兩點,與雙曲線(a≠0,x>0)分別交于D、E兩點.

(1)若點D的坐標為(4,1),點E的坐標為(1,4):
① 分別求出直線l與雙曲線的解析式;(3分)
② 若將直線l向下平移m(m>0)個單位,當m為何值時,直線l與雙曲線有且只有一個交點?(4分)
(2)假設點A的坐標為(a,0),點B的坐標為(0,b),點D為線段AB的n等分點,請直接寫出b的值.(2分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若兩個相似三角形的面積之比為,則在這兩個三角形中,面積較小的三角形與面積較大的三角形的周長之比為    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下面是一個幾何體的三視圖,則這個幾何體的形狀是【   】
A.圓柱B.圓錐C.圓臺D.三棱柱

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=     ..

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若2a=3b=4c,且abc≠0,則的值是
A.2B.﹣2C.3D.﹣3

查看答案和解析>>

同步練習冊答案