先觀察下列等式,再回答問題.
1+
1
12
+
1
22
=1+
1
1
-
1
2
=1+
1
1×2
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
3
=1+
1
2×3
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
4
=1+
1
3×4
=1
1
12

1+
1
42
+
1
52
=1+
1
4
-
1
5
=1+
1
4×5
=1
1
20

(1)根據(jù)上面提供的信息,猜想
1+
1
52
+
1
62
=
 

(2)你能根據(jù)各等式反映的觀律,寫出用n(n為正整數(shù))表示上述規(guī)律的等式嗎?
分析:分析題干得出變換規(guī)律.根式下的數(shù)都為1加上n2的倒數(shù)在加上(n+1)2的倒數(shù).然后等于1加上n的倒數(shù)再減去(n+1)的倒數(shù),然后等于1加上n(n+1)的倒數(shù),應(yīng)注意兩數(shù)都是相差1.
解答:解:(1)原式=1+
1
5
-
1
6
=1
1
30


(2)由分析得:題干中的規(guī)律可言表示為:
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1-
1
n(n+1)
點評:解本題關(guān)鍵是根據(jù)題干的例子得出變換規(guī)律,然后根據(jù)規(guī)律進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答下列問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
;
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)請你根據(jù)上面三個等式提供的信息,猜想
1+
1
42
+
1
52
的結(jié)果,并驗證;
(2)請你按照上面各等式反映的規(guī)律,試寫出用含n的式子表示的等式(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答下列問題①
1 +
1
12
+
1
22
=1+
1
1
-
1
2
=1
1
2
;②
1+
1
22
+
1
32
=1+
1
2
-
1
3
=1
1
6
;③
1+
1
32
+
1
42
=1+
1
3
-
1
4
=1
1
12
,請你根據(jù)上面三個等式提供的信息,猜想
1 +
1
92
+
1
102
的結(jié)果為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再完成題后問題:
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

(1)請你猜想:
1
2010×2011
=
 

(2)若a、b為有理數(shù),且|a-1|+(ab-2)2=0,求:
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2009)(b+2009)
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答問題
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
;
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
;
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)根據(jù)上面三個等式提供的信息,請猜想
1+
1
92
+
1
102
=
1
1
90
1
1
90

(2)請按照上面各等式反映的規(guī)律,試寫出用n(n為正整數(shù))表示的等式,并加以驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根據(jù)上面三個等式提供的信息,請猜想
1+
1
42
+
1
52
的結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案