【題目】閱讀下面的文字后,解答問題:
有這樣一道題目:“如圖,E、D是△ABC中BC邊上的兩點(diǎn),AD=AE, .求證△ABE≌△ACD.請根據(jù)你的理解,在題目中的空格內(nèi),把原題補(bǔ)充完整(添加一個(gè)適當(dāng)?shù)臈l件),并寫出證明過程.
【答案】BE=CD或BD=CE(可得出BE=CD)或AB=AC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)(任選其一即可),證明見解析.
【解析】
先找出證△ABE≌△ACD的已知條件,然后根據(jù)全等三角形的判定定理添加條件即可.
解:∵AD=AE,
∴∠ADE=∠AED.
∴當(dāng)BE=CD或BD=CE(可得出BE=CD)或AB=AC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)時(shí),
∴△ABE≌△ACD.
故答案為:BE=CD或BD=CE(可得出BE=CD)或AB=AC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)(任選其一即可).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動點(diǎn),當(dāng)△BEC面積最大時(shí),請求出點(diǎn)E的坐標(biāo);
(3)在(2)的結(jié)論下,過點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn),,若點(diǎn),,也在二次函數(shù)的圖象上,則下列結(jié)論正確的是( )
A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由正比例函數(shù)沿軸的正方向平移4個(gè)單位而成的一次函數(shù)
的圖像與反比例函數(shù)()在第一象限的圖像交于A(1,n)和B兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與m分別是△ABC邊AC和BC的垂直平分線,l與m分別交邊AB,BC于點(diǎn)D和點(diǎn)E.
(1)若AB=10,則△CDE的周長.
(2)若∠ACB=120°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點(diǎn)D、E.
(1)若AC=12,BC=15,求△ABD的周長;
(2)若∠B=20°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形中,點(diǎn),,,分別按,,,的方向同時(shí)出
發(fā),以的速度勻速運(yùn)動.在運(yùn)動過程中,設(shè)四邊形的面積為,運(yùn)動時(shí)間為.
試證明四邊形是正方形;
寫出關(guān)于的函數(shù)關(guān)系式,并求運(yùn)動幾秒鐘時(shí),面積最小,最小值是多少?
是否存在某一時(shí)刻,使四邊形的面積與正方形的面積比是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com