【題目】菲爾茲獎是國際上享有崇高聲譽(yù)的一個(gè)數(shù)學(xué)獎項(xiàng),每4年評選一次,頒給有卓越貢獻(xiàn)的年輕數(shù)學(xué)家,被視為數(shù)學(xué)界的諾貝爾獎.下面的數(shù)據(jù)是從1936年至2014年45歲以下菲爾茲獎得住獲獎時(shí)的年齡(歲): 39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37
34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38
34 33 40 36 36 37 31 38 38 37 35 40 39 37
請根據(jù)以上數(shù)據(jù),解答以下問題:
(1)小彬按“組距為5”列出了如下的頻數(shù)分布表,每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補(bǔ)充完整,并補(bǔ)全頻數(shù)分布直方圖:
分組 | 頻數(shù) |
A:25~30 | |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | |
總 計(jì) | 50 |
(2)在(1)的基礎(chǔ)上,小彬又畫出了如圖所示的扇形統(tǒng)計(jì)圖,圖中B組所對的圓心角的度數(shù)為;
(3)根據(jù)(1)中的頻數(shù)分布直方圖試描述這50位菲爾茲獎得主獲獎時(shí)的年齡的分布特征.
【答案】
(1)解:如圖所示:
分組 | 頻數(shù) |
A:25~30 | 1 |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | 3 |
總 計(jì) | 50 |
頻數(shù)分布直方圖如下:
(2)108°
(3)解:由頻數(shù)分布直方圖知,這56位菲爾茲獎得主獲獎時(shí)的年齡主要分布在35~40歲
【解析】解:(1)補(bǔ)全頻數(shù)分布直方圖如下:
分組 | 頻數(shù) |
A:25~30 | 1 |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | 3 |
總 計(jì) | 50 |
補(bǔ)全頻數(shù)分布直方圖如下:
所以答案是:1、3.
⑵圖中B組所對的圓心角的度數(shù)為360° =108°,
所以答案是:108°;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻數(shù)分布直方圖的相關(guān)知識,掌握特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖),以及對扇形統(tǒng)計(jì)圖的理解,了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m).
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)E是BD的中點(diǎn),點(diǎn)Q是線段AB上一動點(diǎn),當(dāng)△QBE和△ABD相似時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對稱軸上的動點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4),以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C,動點(diǎn)P從點(diǎn)A出發(fā),以每秒 個(gè)單位的速度沿線段AD向點(diǎn)D運(yùn)動,運(yùn)動時(shí)間為t秒,過點(diǎn)P作PE⊥x軸交拋物線于點(diǎn)M,交AC于點(diǎn)N.
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)當(dāng)t為何值時(shí),△ACM的面積最大?最大值為多少?
(3)點(diǎn)Q從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿線段CD向點(diǎn)D運(yùn)動,當(dāng)t為何值時(shí),在線段PE上存在點(diǎn)H,使以C,Q,N,H為頂點(diǎn)的四邊形為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,直線y=kx+b與x軸正半軸交于點(diǎn)A,與y軸負(fù)半軸交于點(diǎn)B,圓心P在x軸的正半軸上,已知AB=10,AP=
(1)求點(diǎn)P到直線AB的距離;
(2)求直線y=kx+b的解析式;
(3)在圖②中存在點(diǎn)Q,使得∠BQO=90°,連接AQ,請求出AQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x﹣交x軸于點(diǎn)A,交y軸于點(diǎn)C,直線y=x﹣5交x軸于點(diǎn)B,在平面內(nèi)有一點(diǎn)E,其坐標(biāo)為(4,),連接CB,點(diǎn)K是線段CB的中點(diǎn),另有兩點(diǎn)M,N,其坐標(biāo)分別為(a,0),(a+1,0).將K點(diǎn)先向左平移 個(gè)單位,再向上平移個(gè)單位得K′,當(dāng)以K′,E,M,N四點(diǎn)為頂點(diǎn)的四邊形周長最短時(shí),a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知數(shù)軸上有三點(diǎn)A、B、C,它們對應(yīng)的數(shù)分別為a、b、c,且c-b=b-a;點(diǎn)C對應(yīng)的數(shù)是10.
(1)若BC=15,求a、b的值;
(2)如圖2,在(1)的條件下,O為原點(diǎn),動點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P向左運(yùn)動,運(yùn)動速度為2個(gè)單位長度/秒,點(diǎn)Q向右運(yùn)動,運(yùn)動速度為1個(gè)單位長度/秒,N為OP的中點(diǎn),M為BQ的中點(diǎn).
①用含t代數(shù)式表示PQ、 MN;
②在P、Q的運(yùn)動過程中,PQ與MN存在一個(gè)確定的等量關(guān)系,請指出他們之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個(gè)單位到△DEF的位置.
(1)求BC邊上的高;
(2)若AB=10,
①求線段DF的長;
②連結(jié)AE,當(dāng)△ABE時(shí)等腰三角形時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=-x+6于A、B兩點(diǎn),若反比例函數(shù)(x>0)的圖像與△ABC有公共點(diǎn),則k的取值范圍是( )
A. 2≤k≤9 B. 2≤k≤8 C. 2≤k≤5 D. 5≤k≤8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F在AC上,AD=BC,AD//BC,則添加下列哪個(gè)條件后,仍無法判定△ADF≌△CBE的是
A. DF=BE B. ∠D=∠B C. AE=CF D. DF//BE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com