【題目】如圖,已知點(diǎn)O為Rt△ABC斜邊AC上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當(dāng)AE=EC時(shí)tanC的值.

【答案】
(1)證明:連接OE,

∵⊙O與BC相切于點(diǎn)E,

∴OE⊥BC,

∵AB⊥BC,

∴AB∥OE,

∴∠2=∠AEO,

∵OA=OE,

∴∠1=∠AEO,

∴∠1=∠2,即AE平分∠CAB


(2)解:∠C=90°﹣2∠1,tanC=

∵∠EOC是△AOE的外角,

∴∠1+∠AEO=∠EOC,

∵∠1=∠AEO,∠OEC=90°,

∴∠C=90°﹣2∠1,

當(dāng)AE=CE時(shí),∠1=∠C,

∵2∠1+∠C=90°

∴3∠C=90°,∠C=30°

∴tanC=tan30°=


【解析】(1)連接OE,則OE⊥BC,由于AB⊥BC,故可得出AB∥OE,進(jìn)而可得出∠2=∠AEO,由于OA=OE,故∠1=∠AEO,進(jìn)而可得出∠1=∠2;(2)由三角形外角的性質(zhì)可知∠1+∠AEO=∠EOC,因?yàn)椤?=∠AEO,∠OEC=90°,所以2∠1+∠C=90°;當(dāng)AE=CE時(shí),∠1=∠C,再根據(jù)2∠1+∠C=90°即可得出∠C的度數(shù),由特殊角的三角函數(shù)值得出tanC即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識(shí),掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑,以及對(duì)特殊角的三角函數(shù)值的理解,了解分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將5張都是10元的紙幣隨機(jī)裝入10個(gè)完全相同的信封中,設(shè)計(jì)以下幾種抽獎(jiǎng)游戲:

(1)游戲A:設(shè)計(jì)一個(gè)游戲,使任意抽取一個(gè)信封時(shí),能抽到紙幣的概率為;

(2)游戲B:設(shè)計(jì)一個(gè)游戲,使任意抽取一個(gè)信封時(shí),能抽到紙幣的概率為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下面三組數(shù)值:①其中是方程組的解的是(  )

A. B. C. D. 都不是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標(biāo)系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點(diǎn)O′為中心的位似圖形,已知AC=3 ,若點(diǎn)A′的坐標(biāo)為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在等邊三角形ABC中,

如圖①,D,E分別是邊AC,AB上的點(diǎn)且AE=CD,BDEC交于點(diǎn)F,則∠BFE的度數(shù)是   度;

如圖②,D,E分別是邊AC,BA延長(zhǎng)線上的點(diǎn)且AE=CD,BDEC的延長(zhǎng)線交于點(diǎn)F,此時(shí)∠BFE的度數(shù)是   度;

(2)如圖,在△ABC中,AC=BC,∠ACB是銳角,點(diǎn)OAC邊的垂直平分線與BC的交點(diǎn),點(diǎn)D,E分別在AC,OA的延長(zhǎng)線上,AE=CD,BDEC的延長(zhǎng)線交于點(diǎn)F,若∠ACB=α,求∠BFE的大。ㄓ煤α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC=AD,CAD=60°,分別連接BC、BD,作AE平分∠BACBD于點(diǎn)E,若BE=4,ED=8,則DF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過(guò)點(diǎn)A的雙曲線y= 的一支在第一象限交梯形對(duì)角線OC于點(diǎn)D,交邊BC于點(diǎn)E.

(1)填空:雙曲線的另一支在第象限,k的取值范圍是;
(2)若點(diǎn)C的坐標(biāo)為(2,2),當(dāng)點(diǎn)E在什么位置時(shí),陰影部分的面積S最。
(3)若 = ,SOAC=2,求雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點(diǎn)P,過(guò)點(diǎn)P分別作PN垂直于AB于點(diǎn)N,PM垂直于AC于點(diǎn)M,BN和CM有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,ABC中,AB=AC,點(diǎn)M、N分別是AB、AC上的點(diǎn),且AM=AN.連接MN、CM、BN,點(diǎn)D、E、F、G分別是BC、MN、BN、CM的中點(diǎn),連接E、F、D、G.

(l)判斷四邊形EFDG的形狀是   (不必證明);

(2)現(xiàn)將AMN繞點(diǎn)A旋轉(zhuǎn)一定的角度,其他條件不變(如圖②),四邊形EFDG的形狀是否發(fā)生變化?證明你的結(jié)論;

(3)如圖②,在(2)的情況下,請(qǐng)將ABC在原有的條件下添加一個(gè)條件,使四邊形EFDG是正方形.請(qǐng)寫出你添加的條件,并在添加條件的基礎(chǔ)上證明四邊形EFDG是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案