(2012•鞍山)如圖,點(diǎn)G、E、F分別在平行四邊形ABCD的邊AD、DC和BC上,DG=DC,CE=CF,點(diǎn)P是射線GC上一點(diǎn),連接FP,EP.
求證:FP=EP.
分析:根據(jù)平行四邊形的性質(zhì)推出∠DGC=∠GCB,根據(jù)等腰三角形性質(zhì)求出∠DGC=∠DCG,推出∠DCG=∠GCB,根據(jù)等角的補(bǔ)角相等求出∠DCP=∠FCP,根據(jù)SAS證出△PCF≌△PCE即可.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DGC=∠GCB(兩直線平行,內(nèi)錯(cuò)角相等),
∵DG=DC,
∴∠DGC=∠DCG,
∴∠DCG=∠GCB,
∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°,
∴∠DCP=∠FCP,
∵在△PCF和△PCE中
CE=CF
∠FCP=∠ECP
CP=CP

∴△PCF≌△PCE(SAS),
∴PF=PE.
點(diǎn)評(píng):本題考查了平行四邊形性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,等角的補(bǔ)角相等,主要考查學(xué)生的推理能力,題目比較好,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,直線a∥b,EF⊥CD于點(diǎn)F,∠2=65°,則∠1的度數(shù)是
25°
25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于點(diǎn)E,且E是BC中點(diǎn);動(dòng)點(diǎn)P從點(diǎn)E出發(fā)沿路徑ED→DA→AB以每秒1個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng);設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△PBC的面積為S,則下列能反映S與t的函數(shù)關(guān)系的圖象是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,△ABC內(nèi)接于⊙O,AB、CD為⊙O直徑,DE⊥AB于點(diǎn)E,sinA=
12
,則∠D的度數(shù)是
30°
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點(diǎn)A處和點(diǎn)B處各有一棵大樹,AB=30米,某人在河岸MN上選一點(diǎn)C,AC⊥MN,在直線MN上從點(diǎn)C前進(jìn)一段路程到達(dá)點(diǎn)D,測(cè)得∠ADC=30°,∠BDC=60°,求這條河的寬度.(
3
≈1.732,結(jié)果保留三個(gè)有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點(diǎn)D,交⊙O于點(diǎn)C和點(diǎn)E,連接AC、BC、OB,cos∠ACB=
13
,延長OE到點(diǎn)F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案