解答題

如圖,已知線段a,求作線段x=a.

答案:
解析:

答:略。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解答題 
(1)如圖1,∠A=50°,∠BDC=70°,DE∥BC,交AB于點(diǎn)E,BD是△ABC的角平分線.求△BDE各內(nèi)角的度數(shù).
(2)完成下列推理過(guò)程 
已知:如圖2,AD⊥BC,EF⊥BC,∠1=∠2,求證:DG∥AB
證明:AD⊥BC,EF⊥BC(已知)
∴∠EFB∠ADB=90°
垂直的定義
垂直的定義

∴EF∥AD
∴∠1=∠BAD
兩直線平行,同位角相等
兩直線平行,同位角相等

又∠1=∠2(已知)
∠BAD
∠BAD
=
∠2
∠2
等量代換
等量代換

∴DG∥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚恚帉懸坏谰C合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數(shù)表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年重慶市萬(wàn)州區(qū)初中數(shù)學(xué)教師專業(yè)知識(shí)競(jìng)賽試卷(解析版) 題型:解答題

根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚恚帉懸坏谰C合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數(shù)表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習(xí)冊(cè)答案