【題目】定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.

例:如圖①,在ABC中,D為邊BC的中點,AEBCE,則線段DE的長叫做邊BC的中垂距.

1)設三角形一邊的中垂距為dd≥0).若d=0,則這樣的三角形一定是________,推斷的數(shù)學依據(jù)是________

2)如圖②,在ABC中,∠B=45°,AB=BC=8,AD為邊BC的中線,求邊BC的中垂距.

3)如圖③,在矩形ABCD中,AB=6,AD=4.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求ACF中邊AF的中垂距.

【答案】(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).

【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)即可判斷。

(2)如圖②中,作AEBCE.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長。

(3)如圖③中,作CHAFH,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可。

解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等

(2)解:如圖②中,作AE⊥BC于E.

在Rt△ABE中,∵∠AEB=90°,∠B=45°,AB=3 ,

∴AE=BE=3,

∵AD為BC邊中線,BC=8,

∴BD=DC=4,

∴DE=BD﹣BE=4﹣3=1,

∴邊BC的中垂距為1

(3)解:如圖③中,作CH⊥AF于H.

∵四邊形ABCD是矩形,

∴∠D=∠EHC=∠ECF=90°,AD∥BF,

∵DE=EC,∠AED=∠CEF,

∴△ADE≌△FCE,

∴AE=EF,

在Rt△ADE中,∵AD=4,DE=3,

∴AE= =5,

∵∠D=EHC,∠AED=∠CEH,

∴△ADE∽△CHE,

= ,

=

∴EH= ,

∴△ACF中邊AF的中垂距為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,是等腰直角三角形,,點P的邊上沿路徑移動,過點P于點D,設,的面積為(當點P與點B或點C重合時,y的值為0).

琪琪根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是琪琪的探究過程,請補充完整:

1)自變量x的取值范圍是______________________

2)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

y/

0

m

2

n

0

請直接寫出 ,

3)在圖2所示的平面直角坐標系中,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖像;并結(jié)合畫出的函數(shù)圖像,解決問題:當的面積為1時,請直接寫出的長度(數(shù)值保留一位小數(shù)).

4)根據(jù)上述探究過程,試寫出的面積為y的長度x cm之間的函數(shù)關系式,并指出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線,直線、分別交于C、D兩點,點P是直線上的一動點.

(1)如圖,若動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中是否始終具有這一相等關系?試說明理由;

(2)如圖,當動點P在線段CD之外且在的上方運動(不與C、D兩點重合),則上述結(jié)論是否仍成立?若不成立,試寫出新的結(jié)論,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠A30°,AD,BD4,則平行四邊形ABCD的面積等于 ______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某學校高中兩個班的學生上學時步行、騎車、乘公交、乘私家車人數(shù)的扇形統(tǒng)計圖,已知乘公交人數(shù)是乘私家車人數(shù)的2.若步行人數(shù)是18人,則下列結(jié)論正確的是( )

A. 被調(diào)查的學生人數(shù)為90

B. 乘私家車的學生人數(shù)為9

C. 乘公交車的學生人數(shù)為20

D. 騎車的學生人數(shù)為16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+3與拋物線交于AB兩點,點Ax軸上,點B的橫坐標為.動點P在拋物線上運動(不與點A、B重合),過點Py軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設點P的橫坐標為m

1)求b、c的值.

2)當點N落在直線AB上時,直接寫出m的取值范圍.

3)當點PAB兩點之間的拋物線上運動時,設正方形PQMN的周長為C,求Cm之間的函數(shù)關系式,并寫出Cm增大而增大時m的取值范圍.

4)當PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( cm2

A72 B90 C108 D144

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學生聽寫漢字39個,比賽結(jié)束后隨機抽查部分學生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分

組別

正確字數(shù)

人數(shù)

10

15

25

根據(jù)以上信息解決下列問題:

1)在統(tǒng)計表中, , ,并補全條形統(tǒng)計圖.

2)扇形統(tǒng)計圖中所對應的圓心角的度數(shù)是 .

3)若該校共有900名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結(jié)DE,已知∠B=30°O的半徑為12,弧DE的長度為

1)求證:DEBC;

2)若AF=CE,求線段BC的長度.

查看答案和解析>>

同步練習冊答案