【題目】如圖,已知∠BAC=30°,把△ABC繞著點A順時針旋轉到△ADE的位置,使得點D,A,C在同一直線上.
(1)△ABC旋轉了多少度?
(2)連接CE,試判斷△AEC的形狀;
(3)求 ∠AEC的度數(shù).
【答案】(1)150°;(2)詳見解析;(3)15°
【解析】
(1)根據(jù)旋轉的性質(zhì),利用補角性質(zhì)即可解題;
(2)根據(jù)旋轉后的對應邊相等即可解題;
(3)利用外角性質(zhì)即可解題.
解:(1)∵點D,A,C在同一直線上,
∴∠BAD=180°-∠BAC=180°-30°=150°,
∴△ABC旋轉了150°;
(2)根據(jù)旋轉的性質(zhì),可知AC=AE,
∴△AEC是等腰三角形;
(3)根據(jù)旋轉的性質(zhì)可知,∠CAE=∠BAD=150°,AC=AE,
∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD的對角線AC,BD交于點O,將△COD繞點O逆時針旋轉得到△EOF(旋轉角為銳角),連AE,BF,DF,則AE=BF.
(1)如圖2,若(1)中的正方形為矩形,其他條件不變.
①探究AE與BF的數(shù)量關系,并證明你的結論;
②若BD=7,AE=,求DF的長;
(2)如圖3,若(1)中的正方形為平行四邊形,其他條件不變,且BD=10,AC=6,AE=5,請直接寫出DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020賀歲片《囧媽》提檔大年三十網(wǎng)絡首播.“樂調(diào)查”平臺為了全面了解觀眾對《囧媽》的滿意度情況,進行隨機抽樣調(diào)查,分為四個類別:.非常滿意;.滿意;.基本滿意;.不滿意,依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計圖(不完整).
根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的觀眾共有_______人;
(2)扇形統(tǒng)計圖中,扇形的圓心角度數(shù)是_______;
(3)請補全條形統(tǒng)計圖;
(4)“樂調(diào)查”平臺調(diào)查了春節(jié)期間觀看《固媽》的觀眾約5000人,請估計觀眾對該電影的滿意(、、類視為滿意)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABC內(nèi)接于⊙O,AB為⊙O的直徑,∠ACB的平分線CD交⊙O于點D,過點D作⊙O的切線PD,交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:PD//AB;
(2)求證:DE=BF;
(3)若AC=6,tan∠CAB=,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B,C,D四個地區(qū)爆發(fā)病毒疫情,它們之間的道路連通情況和距離(單位:km)如圖所示,經(jīng)調(diào)查發(fā)現(xiàn),某地區(qū)受感染率與相鄰地區(qū)自發(fā)病率和距離有關,具體公式為:
A地受B地的感染率.已知A地受B地和D地感染率之相鄰地區(qū)和為9%,D地的自發(fā)病率為24%.
(1)求B地的自發(fā)病率;
(2)規(guī)定某地的危險系數(shù)等于該地的自發(fā)病率與總受感染率的和.
①若C地危險系數(shù)是A地危險系數(shù)的兩倍,且D地受感染率比B地高5%,求A地的自發(fā)病率;
②在①的條件下,A地派出6支醫(yī)療隊支援B,D兩地,每派出1支醫(yī)療隊,A地自身發(fā)病率上升0.75%,每支醫(yī)療隊可以讓被支援的地區(qū)的自發(fā)病率下降4%.在保證A地危險系數(shù)不上升的前提下,A地各派往B,D兩地多少支隊伍時,B地的自發(fā)病率下降最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在反比例函數(shù)(x<0)的圖象上,連接OA,分別以點O和點A為圓心,大于的長為半徑作弧,兩弧相交于B,C兩點,過B,C兩點作直線交x軸于點D,連接AD.若∠AOD=30°,△AOD的面積為2,則k的值為( )
A.﹣6B.6C.﹣2D.﹣3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC.CD∥AB,點D在點C的右側,點A,E關于直線BD對稱,CE交BD于點F,AE交DB延長線于點G.
(1)(猜想)
如圖①,當∠ABC=90°時,∠EFG=________;
(2)(探究)
在(1)的前提下,若AB=4,CD=1,求EF的長;
(3)(應用)
如圖②,當∠ABC=120°時,若EF=2 ,AB=2,則CD=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉辦“迎亞運”學生書畫展覽,現(xiàn)要在長方形展廳中劃出3個形狀、大小完全一樣的小長方方形“圖中陰影部分”區(qū)域擺放作品.
(1)如圖1,若大長方形的長和寬分別為45米和30米,求小長方形的長和寬;
(2)如圖2,若大長方形的長和寬分別為和.
①直接寫出1個小長方形周長與大長方形周長之比;
②若作品展覽區(qū)域(陰影部分)面積占展廳面積的,試求的值,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com