【題目】某銷售商計劃購進甲、乙兩種商品共件進行銷售.已知甲種商品每件進價元,乙種商品每件進價元;通過市場考察,銷售商決定甲種商品以每件元的價格出售,乙種商品以每件元的價格出售.設銷售商購進的甲種商品有件,銷售完甲、乙兩種商品后獲得的總利潤為

的函數(shù)關系式;

如果銷售商購進的甲種商品的數(shù)量不少于乙種商品數(shù)量的倍,請求出獲利最大的進貨方案,所獲得的最大利潤是多少元?

【答案】(1) ;(2)12000.

【解析】

1)根據(jù)利潤和單件利潤以及數(shù)量之間的關系可直接列出函數(shù)關系式;

2)由題意得,根據(jù)一次函數(shù)的性質,可得當時,最大.

解:由題意得:

的函數(shù)關系式是

由題意得

解得:

的增大而減小.

時,最大.

此時

獲利最大的進貨方案是:甲種商品購進件,乙種商品購進:(件);

此時獲得的最大利潤是元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABa、b

1)請用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)

延長線段ABC,使BCa;

反向延長線段ABD,使ADb

2)在(1)的條件下,如果AB8cm,a6m,b10cm,且點ECD的中點,求線段AE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE4,過點EEFBC,分別交BD,CD于點GF兩點,若MN分別是DG,CE的中點,則MN的長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.

(1)求k的值;

(2)在y軸上是否存在點B,使以點B、A、H、M為頂點的四邊形是平行四邊形?如果存在,求出B點坐標;如果不存在,請說明理由;

(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上有一點P,使得PM+PN最小,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步弘揚中華優(yōu)秀傳統(tǒng)文化,某校決定開展以下四項活動:A經典古詩文朗誦;B書畫作品鑒賞;C民族樂器表演;D圍棋賽學校要求學生全員參與,且每人限報一項九年級班班長根據(jù)本班報名結果,繪制出了如下兩個尚不完整的統(tǒng)計圖,請結合圖中信息解答下列問題:

直接填空:九年級班的學生人數(shù)是______,在扇形統(tǒng)計圖中,B項目所對應的扇形的圓心角度數(shù)是______;

將條形統(tǒng)計圖補充完整;

用列表或畫樹狀圖的方法,求該班學生小聰和小明參加相同項目活動的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學要在一塊三角形花圃里種植兩種不同的花草,同時擬從A點修建一條小路到邊BC

1)若要使修建小路所用的材料最少,請在下圖中畫出小路AD

2)若要使小路兩側種植不同花草的面積相等,請在下圖中畫出小路AE,其中E點滿足的條件是________,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當PE=2PF時,AP=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點PPECPAB于點D,且PE=PC,過點PPFOPPF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.

(1)直接寫出點E的坐標(用含t的代數(shù)式表示):_____;

(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;

(3)BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.

查看答案和解析>>

同步練習冊答案