【題目】如圖,△ABC中,D為BC邊上的一點(diǎn),若∠B=36°,AB=AC=BD=2.
(1)求CD的長;
(2)利用此圖求sin18°的值.
【答案】(1)CD=﹣1;(2).
【解析】
(1)求出△CAD∽△CBA,得出比例式,代入求出即可;
(2)求出△EAD是直角三角形,求出AD的長度,即可求出答案.
(1)∵AB=AC,∠B=36°,
∴∠C=∠B=36°,
∴∠BAC=180°﹣∠B﹣∠C=108°,
∵AB=BD,∠B=36°,
∴∠BAD=∠BDA=(180°﹣∠B)=72°,
∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°,
即∠DAC=∠B,
∵∠C=∠C,
∴△CAD∽△CBA,
∴=,
∵AB=AC=BD=2,
∴=,
解得:CD=﹣1或-﹣1(負(fù)數(shù)舍去);
(2)延長CB到E,使BE=AB=2,連接AE,
則∠E=∠BAE,
∵∠ABC=36°=∠E+∠BAE,
∴∠E=∠BAE=18°,
∵∠BAD=72°,
∴∠EAD=72°+18°=90°,
∵∠C=∠CAD=36°,
∴AD=CD=﹣1,
在Rt△EAD中,sinE===,
即sin18°=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,過A,B,C三點(diǎn)在三角形內(nèi)分別作∠1=∠2=∠3,三個(gè)角的邊相交于D,E,F,
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明.
(2)△DEF是否為正三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,對(duì)角線,相交于點(diǎn),且,,動(dòng)點(diǎn),分別從點(diǎn),同時(shí)出發(fā),運(yùn)動(dòng)速度均為,點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止,點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止后繼續(xù)運(yùn)動(dòng),到點(diǎn)停止,連接,,.設(shè)的面積為(這里規(guī)定:線段是面積的幾何圖形),點(diǎn)的運(yùn)動(dòng)時(shí)間為.
如圖,菱形中,對(duì)角線,相交于點(diǎn),且,,動(dòng)點(diǎn),分別從點(diǎn),同時(shí)出發(fā),運(yùn)動(dòng)速度均為,點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止,點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止后繼續(xù)運(yùn)動(dòng),到點(diǎn)停止,連接,,.設(shè)的面積為(這里規(guī)定:線段是面積的幾何圖形),點(diǎn)的運(yùn)動(dòng)時(shí)間為.
填空:________,與之間的距離為________;
當(dāng)時(shí),求與之間的函數(shù)解析式;
直接寫出在整個(gè)運(yùn)動(dòng)過程中,使與菱形一邊平行的所有的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般來說,依據(jù)數(shù)學(xué)研究對(duì)象本質(zhì)屬性的相同點(diǎn)和差異點(diǎn),將數(shù)學(xué)對(duì)象分為不同種類的數(shù)學(xué)思想叫做“分類”的思想;將事物進(jìn)行分類,然后對(duì)劃分的每一類分別進(jìn)行研究和求解的方法叫做“分類討論”的方法.請(qǐng)依據(jù)分類的思想和分類討論的方法解決下列問題:
如圖,在中,.
若是銳角,請(qǐng)?zhí)剿髟谥本上有多少個(gè)點(diǎn),能保證(不包括全等)?
請(qǐng)對(duì)進(jìn)行恰當(dāng)?shù)姆诸悾苯訉懗雒恳活愒谥本上能保證(不包括全等)的點(diǎn)的個(gè)數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)D,過點(diǎn)D作EF∥BC交AB,AC于點(diǎn)E,F,若AB=10,AC=8,則△AEF的周長是_______________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,等邊三角形ABC的邊長為4,兩頂點(diǎn)B、C分別在y軸的正半軸和x軸的正半軸上運(yùn)動(dòng),顯然,當(dāng)OA⊥BC于點(diǎn)D時(shí),頂點(diǎn)A到原點(diǎn)O的距離最大,試求出此時(shí)線段OA的長.
(2)如圖2,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,兩頂點(diǎn)B、C分別在x軸的正半制和y軸的正半軸上運(yùn)動(dòng),求出頂點(diǎn)A到原點(diǎn)O的最大距離.
(3)如圖3,正六邊形ABCDEF的邊長為4,頂點(diǎn)B、C分別在x軸正半軸和y軸正半軸上運(yùn)動(dòng),直接寫出頂點(diǎn)E到原點(diǎn)O的距離的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為、、(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
向下平移個(gè)單位長度得到的,點(diǎn)的坐標(biāo)是________;
以點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫出,使與位似,且位似比為,點(diǎn)的坐標(biāo)是________;(畫出圖形)
的面積是________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在一次函數(shù)的圖象上,它們的橫坐標(biāo)依次為,1,2,分別過這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是( 。
A. 1 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的方格紙中有若干個(gè)點(diǎn),若A、B兩點(diǎn)關(guān)于過某點(diǎn)的直線對(duì)稱,這個(gè)點(diǎn)可能是( ).
A.P1B.P2C.P3D.P4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com