【題目】在平面直角坐標系中,反比例函數(shù)的圖象與直線交于點
(1)求k的值;
(2)已知點,過點P作垂直于x軸的直線,交直線于點B,交函數(shù)于點C.
①當時,判斷線段與的數(shù)量關系,并說明理由;
②若,結合圖象,直接寫出n的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對折矩形紙片ABCD,使AB與DC重合得到折痕EF,將紙片展平,再一次折疊,使點D落到EF上點G處,并使折痕經(jīng)過點A,已知BC=2,則線段EG的長度為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】五名學生投籃球,每人投10次,統(tǒng)計他們每人投中的次數(shù).得到五個數(shù)據(jù),并對數(shù)據(jù)進行整理和分析給出如下信息:
平均數(shù) | 中位數(shù) | 眾數(shù) |
m | 6 | 7 |
則下列選項正確的是( )
A.可能會有學生投中了8次
B.五個數(shù)據(jù)之和的最大值可能為30
C.五個數(shù)據(jù)之和的最小值可能為20
D.平均數(shù)m一定滿足
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,點D是外一點,點D與點C在直線的異側,且點不共線,連接.
(1)如圖1,當時,畫出圖形,直接寫出之間的數(shù)量關系;
(2)當時,利用圖2,繼續(xù)探究之間的數(shù)量關系并證明;
(提示:嘗試運用圖形變換,將要研究的有關線段盡可能轉移到一個三角形中)
(3)當時,進一步探究之間的數(shù)量關系,并用含的等式直接表示出它們之間的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】過三角形的任意兩個頂點畫一條弧,若弧上的所有點都在該三角形的內(nèi)部或邊上,則稱該弧為三角形的“形內(nèi)弧”.
(1)如圖,在等腰中,,.
①在下圖中畫出一條的形內(nèi)。
②在中,其形內(nèi)弧的長度最長為______.
(2)在平面直角坐標系中,點,,.點M為形內(nèi)弧所在圓的圓心.求點M縱坐標的取值范圍;
(3)在平面直角坐標系中,點,點G為x軸上一點.點P為最長形內(nèi)弧所在圓的圓心,求點P縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸交于點.
(1)求點的坐標(用含的式子表示);
(2)求拋物線與軸的交點坐標;
(3)已知點,,如果拋物線與線段恰有一個公共點,結合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)在正方形ABCD中,G是CD邊上的一個動點(不與C、D重合),以CG為邊在正方形ABCD外作一個正方形CEFG,連結BG、DE,如圖①.直接寫出線段BG、DE的關系 ;
(2)將圖①中的正方形CEFG繞點C按順時針方向旋轉任意角度,如圖②,試判斷(1)中的結論是否成立?若成立,直接寫出結論,若不成立,說明理由;
(3)將(1)中的正方形都改為矩形,如圖③,再將矩形CEFG繞點C按順時針方向旋轉任意角度,如圖④,若AB=a,BC=b;CE =ka,CG=kb,()試判斷(1)中的結論是否仍然成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com