【題目】我市東湖高新技術(shù)開(kāi)發(fā)區(qū)某科技公司,用480萬(wàn)元購(gòu)得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬(wàn)元購(gòu)買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價(jià)不低于100元,但不超過(guò)200元.設(shè)銷售單價(jià)為x(元),年銷售量為y(萬(wàn)件),年獲利為w(萬(wàn)元)該產(chǎn)品年銷售量y(萬(wàn)件)與產(chǎn)品售價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說(shuō)明投資的第一年,該公司是盈利還是虧損?并求當(dāng)盈利最大或虧損最小時(shí)的產(chǎn)品售價(jià);

(3)在(2)的條件下.即在盈利最大或虧損最小時(shí),第二年公司重新確定產(chǎn)品售價(jià),能否使兩年共盈利不低于1370萬(wàn)元?若能,求出第二年的售價(jià)在什么范圍內(nèi);若不能,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x+30(100≤x≤200);(2)x=170,w最大值=1690<1520+480=2000,第一年公司虧損,最少虧損是310萬(wàn)元,此時(shí)售價(jià)為170元;(3)當(dāng)兩年共盈利不低于1370萬(wàn)元時(shí),160≤x≤180.

【解析】

(1)利用待定系數(shù)法求解可得;
(2)根據(jù)“年獲利=(售價(jià)-成本價(jià))×銷售量”列出函數(shù)解析式,配方成頂點(diǎn)式得出其獲利最大值,與前期總投入480+1520比較可得;
(3)根據(jù)“年獲利=1370+前期最少虧損錢數(shù)”求得x的值,從而得出答案.

解:(1)設(shè)y=kx+b,

將(100,20)和(200,10)代入,得:,

解得: ,

∴y=﹣ x+30(100≤x≤200);

(2)w=(﹣x+30)(x﹣40)

=﹣x2+34x﹣1200

=﹣(x﹣170)2+1690,

∵﹣<0,

x=170,w最大值=1690<1520+480=2000,第一年公司虧損,最少虧損是310萬(wàn)元,此時(shí)售價(jià)為170元;

(3)當(dāng)﹣x2+34x﹣1200=1370+310=1680時(shí),

解得:x1=160,x2=180,

結(jié)合圖象當(dāng)兩年共盈利不低于1370萬(wàn)元時(shí),160≤x≤180.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中的虛線剪開(kāi)均分成四個(gè)小長(zhǎng)方形,然后按圖②形狀拼成一個(gè)正方形.

1)若,.求圖②中陰影部分面積;

2)觀察圖②,寫(xiě)出,,三個(gè)代數(shù)式之間的等量關(guān)系.(簡(jiǎn)要寫(xiě)出推理過(guò)程)

3)根據(jù)(2)題的等量關(guān)系,完成下列問(wèn)題:若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到A′B′C′,且點(diǎn)B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則A′BA等于( 。

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c,如表給出了y與x的部分對(duì)應(yīng)值:

x

﹣1

0

1

2

3

y=ax2+bx+c

n

3

0

﹣5

﹣12

(1)根據(jù)表格中的數(shù)據(jù),試確定二次函數(shù)的解析式和n的值;

(2)拋物線y=ax2+bx+c與直線y=2x+m沒(méi)有交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)用圖形變化的方法研究下列問(wèn)題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且ABCDEF,AB=10,CD=6,EF=8。則圖中陰影部分的面積是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,AD是等腰直角三角板ABC斜邊BC上的高,另一塊三角板DMN的直角頂點(diǎn)與點(diǎn)D重合,DM、DN分別交AB、AC于點(diǎn)E、F

1)請(qǐng)判別DEF的形狀.并證明你的結(jié)論;

2)若BC4,求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 Rt△ABC 中,∠A=90°,∠C=30°.將△ABC 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn) 60°得到△A'BC',其中點(diǎn) A',C'分別是點(diǎn) A,C 的對(duì)應(yīng)點(diǎn).

(1)作出△A'BC'(要求尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);

(2)連接 AA',求∠C'A'A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為12,周長(zhǎng)是48cm,求:

1)兩條對(duì)角線的長(zhǎng)度;

2)菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案