已知AB是⊙O的直徑,C是AB延長線上一點,CD切⊙O于D,DE⊥OC于E,CD=4.⊙O的半徑為3,則OE的長為

[  ]

A.
B.
C.
D.
答案:B
解析:

CD是圓O的切線,切點是D,

連半徑OD,則

OD⊥CD

在直角三角形ODC中,CD=4, OD=3

由勾股定理得  OC=5。

因為DE⊥OC,

所以△ODC∽△OED

OD∶OC=OE∶OD

3∶5=OE∶3

OE=9/5。

選B。


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,∠CAB=30°,過點C的⊙O的切線交AB延長線于D,若OD=4
3
,那么弦AC長等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,過點O作弦BC的平行線,交過點A的切線AP于點P,連接AC.
(1)求證:△ABC∽△POA;
(2)若OB=2,OP=
72
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,點C在⊙O上,直線CD與AB的延長線交于點D,∠COB=2∠DCB.精英家教網(wǎng)
(1)求證:CD是⊙O的切線;
(2)點E是
AB
的中點,CE交AB于點F,若AB=4,求EF•EC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,AD切⊙O于點A,
EC
=
CB
.給出下列結(jié)論:
①BA⊥DA;②OC∥AE;③OD⊥AC;④∠EAC=
1
4
∠EOB.
其中正確的結(jié)論有
①②④
①②④
.(把你認為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB是⊙O的直徑,弧AC的度數(shù)是30°.如果⊙O的直徑為4,那么AC2等于( 。

查看答案和解析>>

同步練習冊答案