精英家教網 > 初中數學 > 題目詳情
如圖,直線l:y=
43
x+4
交x軸、y軸于A、B點,四邊形ABCD為等腰梯形,BC∥AD,AD=12.
(1)寫出點A、B、C的坐標;
(2)若直線l沿x軸正方向平移m(m>0)個單位長度,與BC、AD分別交于E、F點,當四邊形ABEF的面積為24時,求直線EF的表達式以及點F到腰CD的距離;
(3)若B點沿BC方向,從B到C運動,速度為每秒1個單位長度,A點同時沿AD方向,從A到D運動,速度為每秒2個單位長度,經過t秒后,A到達P處,精英家教網B到達Q處,問:是否存在t,使得△PQD為直角三角形?若存在,請求出t的值;若不存在,請說明理由.
分析:(1)分別令x=0,y=0求出A、B的坐標.又因為線段BC平行與x軸,易求點C的坐標.
(2)本題有多種證法.證明四邊形ABEF為平行四邊形求出m的值.設直線EF的解析式為y=
4
3
x+b.利用勾股定理以及三角函數值求出有關線段的長.然后利用輔助線的幫助求出點F到腰CD的距離.
(3)本題要依靠輔助線的幫助.過點Q作QK⊥AD于K,根據勾股定理求出PQ,DQ的值.然后分情況討論t的值.(∠QDP≤∠CDP;∠DPQ=90°;∠PQD=90°)
解答:解:(1)令x=0,則y=4;y=0,則x=-3.
∴A(-3,0),B(0,4),C(6,4).

(2)∵BC∥AD,EF∥AB,
∴四邊形ABEF為平行四邊形.精英家教網
∴SABEF=AF×OB=4m,又SABEF=24,
∴m=6.
∴F(3,0).
設直線EF的表達式為y=
4
3
x+b

0=
4
3
×3+b
,b=-4,
∴直線EF的表達式為y=
4
3
x-4

過點C作CG⊥AD于G.
∵四邊形ABCD為等腰梯形,
∴DG=OA=3,
在Rt△CGD中,CD=
CG2+DG2
=
42+32
=5
sin∠CDG=
CG
CD
=
4
5

過點F作FH⊥CD于H.
在Rt△FHD中,FD=AD-AF=12-6=6
FH
FD
=sin∠HDF,即
FH
6
=
4
5
,
FH=
24
5

即點F到腰CD的距離為
24
5

證法二:利用相似可以求得.
過點C作CG⊥AD于G,過點F作FH⊥CD于H.
∵四邊形ABCD為等腰梯形,
∴DG=OA=3,
在Rt△CGD中,CD=
CG2+DG2
=
42+32
=5

在Rt△FHD中,FD=AD-AF=12-6=6.
由Rt△CGD∽Rt△FHD得
CG
FH
=
CD
FD

4
FH
=
5
6
,∴FH=
24
5
,即點F到腰CD的距離為
24
5
精英家教網

(3)過點Q作QK⊥AD于K,依題意,得
BQ=t,AP=2t,PD=12-t,PK=|t-3|,DK=9-t,0≤t<6.
于是PQ2=42+(t-3)2=t2-6t+25;
DQ2=42+(9-t)2=t2-18t+97PD2=(12-2t)2=4t2-48t+144.
①∵∠QDP≤∠CDP,
∴∠QDP不可能為直角.
②若∠DPQ=90°,則PQ2+PD2=DQ2,t2-6t+25+4t2-48t+144=t2-18t+97.
整理得t2-9t+18=0.
解得t=3或t=6(舍去).
③若∠PQD=90°,則PQ2+DQ2=PD2,t2-6t+25+t2-18t+97=4t2-48t+144.
整理得t2-12t+11=0,解得t=1或t=11(舍去).
綜上所述,當t=3或t=1時,△PQD為直角三角形.
點評:本題考查的是分段函數的有關知識,一次函數的綜合利用以及勾股定理的應用,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點A(-2,4),B(8,2).精英家教網
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

4、如圖,直線AB、CD相交于點E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數學 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(可在圖中用數字表示角).

查看答案和解析>>

同步練習冊答案