【題目】(1)如圖1,AB∥CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度數(shù).
(2)如圖2,已知AB∥CD,CF平分∠DCE,∠EBF=2∠ABF,若∠F的2倍與∠E的補(bǔ)角的和為190°,求∠ABE的度數(shù).
(3)如圖3,若P是(2)中的射線(xiàn)BE上一點(diǎn),G是CD上任一點(diǎn),PQ∥GN,PQ平分∠BPG,GM平分∠DGP,若∠B=30°,求∠MGN的度數(shù).
【答案】(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°
【解析】
(1)過(guò)E作EM∥AB,根據(jù)平行線(xiàn)的判定與性質(zhì)和角平分線(xiàn)的定義解答即可;
(2)過(guò)E作EM∥AB,過(guò)F作FN∥AB,根據(jù)平行線(xiàn)的判定與性質(zhì),角平分線(xiàn)的定義以及解一元一次方程解答即可;
(3)過(guò)P作PL∥AB,根據(jù)平行線(xiàn)的判定與性質(zhì),三角形的內(nèi)角和定理,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),角平分線(xiàn)的定義解答即可.
解:(1)過(guò)E作EM∥AB,
∵AB∥CD,
∴CD∥EM∥AB,
∴∠ABE=∠BEM,
∠DCE=∠CEM,
∵CF平分∠DCE,
∴∠DCE=2∠DCF,
∵∠DCF=30°,
∴∠DCE=60°,
∴∠CEM=60°,
又∵∠CEB=20°,
∴∠BEM=∠CEM﹣∠CEB=40°,
∴∠ABE=40°;
(2)過(guò)E作EM∥AB,過(guò)F作FN∥AB,
∵∠EBF=2∠ABF,
∴設(shè)∠ABF=x,∠EBF=2x,則∠ABE=3x,
∵CF平分∠DCE,
∴設(shè)∠DCF=∠ECF=y,則∠DCE=2y,
∵AB∥CD,
∴EM∥AB∥CD,
∴∠DCE=∠CEM=2y,
∠BEM=∠ABE=3x,
∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,
同理∠CFB=y﹣x,
∵2∠CFB+(180°﹣∠CEB)=190°,
∴2(y﹣x)+180°﹣(2y﹣3x)=190°,
∴x=10°,
∴∠ABE=3x=30°;
(3)過(guò)P作PL∥AB,
∵GM平分∠DGP,
∴設(shè)∠DGM=∠PGM=y,則∠DGP=2y,
∵PQ平分∠BPG,
∴設(shè)∠BPQ=∠GPQ=x,則∠BPG=2x,
∵PQ∥QN,
∴∠PGN=∠GPQ=x,
∵AB∥CD,
∴PL∥AB∥CD,
∴∠GPL=∠DGP=2y,
∠BPL=∠ABP=30°,
∵∠BPL=∠GPL﹣∠BPG,
∴30°=2y﹣2x,
∴y﹣x=15°,
∵∠MGN=∠PGM﹣∠PGN=y﹣x,
∴∠MGN=15°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿(mǎn)足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+m=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求實(shí)數(shù)m的最大整數(shù)值;
(2)在(1)的條件下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式+-的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
對(duì)于多項(xiàng)式,如果我們把代入此多項(xiàng)式,發(fā)現(xiàn)的值為0,這時(shí)可以確定多項(xiàng)式中有因式:同理,可以確定多項(xiàng)式中有另一個(gè)因式,于是我們可以得到:.
又如:對(duì)于多項(xiàng)式,發(fā)現(xiàn)當(dāng)時(shí),的值為0,則多項(xiàng)式有一個(gè)因式,我們可以設(shè),解得,,于是我們可以得到:.
請(qǐng)你根據(jù)以上材料,解答以下問(wèn)題:
(1)當(dāng) 時(shí),多項(xiàng)式的值為0,所以多項(xiàng)式有因式 ,從而因式分解 .
(2)以上這種因式分解的方法叫試根法,常用來(lái)分解一些比較復(fù)雜的多項(xiàng)式.請(qǐng)你嘗試用試根法分解多項(xiàng)式:①;②.
(3)小聰用試根法成功解決了以上多項(xiàng)式的因式分解,于是他猜想:
代數(shù)式有因式 , , ,
所以分解因式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線(xiàn),BM⊥AD,垂足為M,且AB=5,BM=2,AC=9,則∠ABC與∠C的關(guān)系為( )
A.∠ABC=2∠CB.∠ABC=∠CC.∠ABC=∠CD.∠ABC=3∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0),C點(diǎn)的坐標(biāo)為(0,6),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O﹣A﹣B﹣C﹣O的路線(xiàn)移動(dòng)(即沿長(zhǎng)方形移動(dòng)一周).
(1)寫(xiě)出B點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)3秒時(shí),求三角形OAP的面積;
(3)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸距離為4個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線(xiàn)AE的對(duì)稱(chēng)點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長(zhǎng)線(xiàn)上,則等式DE2=BD2+CE2還能成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=4,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,OE⊥AC交BC于點(diǎn)E,CE=3,則矩形ABCD的面積為( )
A.B.C.12D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中
(1)求作:△ABC的內(nèi)切圓⊙O(要求尺規(guī)作圖,保留作圖痕跡,不必寫(xiě)作法)
(2)綜合應(yīng)用:在你所作的圓中,若∠AOB=140°,求∠C的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com