【題目】2019年4月15日傍晚法國地標性建筑巴黎圣母院突遭大火吞噬,導致屋頂和主尖塔坍塌,哥特式的玫瑰花窗損毀.為了重建巴黎圣母院,設計小組設計了一個由三色玻璃拼成的花窗,如圖所示,主體部分由矩形和半圓組成,設半圓為區(qū)域,四個全等的直角三角形為區(qū)域,矩形內的陰影部分為區(qū)域,其中,設
當,求區(qū)域的面積.
請用的代數(shù)式表示出區(qū)域的面積并求出其最大值.
為了美觀,設置區(qū)域與區(qū)域的面積之比為.區(qū)域、區(qū)域、區(qū)域分別鑲嵌紅、藍、黃色三種玻璃,已知這三種玻璃的單價之和為元(三種玻璃的單價均為整數(shù)),整個花窗鑲嵌玻璃共花費了元,求這三種玻璃的單價.(取)
【答案】(1)12;(2);(3)紅色玻璃單價為80元/m2,藍色玻璃單價為49元/m2,黃色玻璃單價為61元/m2
【解析】
(1)先求得一個直角三角形的面積,再乘以即可得區(qū)域的面積;
(2)根據(jù)題意列出與的二次函數(shù)關系式,根據(jù)頂點式的系數(shù)特點得到其圖象性質---開口方向以及增減性,再根據(jù)自變量的取值范圍,即可求得答案;
(3)設紅、藍、黃三種玻璃的單價分別為每平方米、、元,列出關于、的二元一次方程,解出方程的正整數(shù)解即可得到答案.
解:(1)根據(jù)題意可得:;
(2)∵由(1)可得:
∴
∴拋物線開口向下
∵對稱軸為
∴當時,隨的增大而增大
∵
∴當時,;
(3)設紅、藍、黃三種玻璃的單價分別為每平方米、、元
∵、均為正整數(shù)
∴,,
答:紅、藍、黃三種玻璃的單價分別為每平方米元、元、元.
故答案是:(1)(2);(3)紅色玻璃單價為80元/m2,藍色玻璃單價為49元/m2,黃色玻璃單價為61元/m2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,P為CD的中點,連結AP,過點B作BE⊥AP于點E,延長CE交AD于點F,過點C作CH⊥BE于點G,交AB于點H,連接HF.下列結論正確的是( 。
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點,點A在x軸上,點B在y軸上.設拋物線與x軸的另一個交點為點C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(不與點A、B重合),
①如圖2,若點P在直線AB上方,連接OP交AB于點D,求的最大值;
②如圖3,若點P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點E或F恰好落在y軸上,直接寫出對應的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.
(1)求拋物線的解析式;
(2)當點P在直線OD下方時,求面積的最大值.
(3)直線OQ與線段BC相交于點E,當與相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小學三年級到六年級的全體學生參加“禮儀”知識測試,現(xiàn)將有關數(shù)據(jù)整理后繪制成如下“年級人數(shù)統(tǒng)計圖”和尚未全部完成的“成績情況統(tǒng)計表”根據(jù)圖表中提供的信息,回答下列問題:
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數(shù) | 21 | 40 | 5 | ||
頻率 |
|
(1)測試學生中,成績?yōu)?/span>80分的學生人數(shù)有___名;眾數(shù)是___分;中位數(shù)是___分;
若該小學三年級到六年級共有1800名學生,則可估計出成績?yōu)?/span>70分的學生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品原價為100元,第一次漲價,第二次在第一次的基礎上又漲價,設平均每次增長的百分數(shù)為x,那么x應滿足的方程是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是一個圓形飛鏢靶的示意圖,其中A,B,C,D,E,F是⊙O的六等分點,如果向該飛鏢靶上任意投一枚飛鏢,則飛鏢落在陰影區(qū)域的概率是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出(1)如圖①,在△ABC中,BC=6,D為BC上一點,AD=4,則△ABC面積的最大值是 .
問題探究(2)如圖②,已知矩形ABCD的周長為12,求矩形ABCD面積的最大值.
問題解決(3)如圖③,△ABC是葛叔叔家的菜地示意圖,其中AB=30米,BC=40米,AC=50米,現(xiàn)在他想利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔欲建的魚塘是四邊形ABCD,且滿足∠ADC=60°.你認為葛叔叔的想法能否實現(xiàn)?若能,求出這個四邊形魚塘周長的最大值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com