【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連接PC,若△ABC的面積為2cm2,則△BPC的面積為()
A.0.5cm2B.1cm2C.1.5cm2D.2cm2
科目:初中數(shù)學 來源: 題型:
【題目】有甲乙兩名采購員去同一家飼料公司分別購買兩次飼料,兩次購買飼料價格分別為m元/千克和n元/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料.
(1)甲、乙所購飼料的平均單價各是多少?(用字母m、n表示)
(2)誰的購貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司購進一種化工原料若干千克,價格為每千克元,物價部門規(guī)定其銷售單價每千克不高于元且不低于元,經(jīng)市場調(diào)查發(fā)現(xiàn),日銷售量(千克)是銷售單價(元)的一次函數(shù),且當時,,當時,.
求與的函數(shù)解析式;
求該公司銷售該原料日獲利(元)與銷售單價(元)之間的函數(shù)解析式;
求當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是AB上的點,過點D作DE⊥AB交BC于點F,交AC的延長線于點E,連接CD,∠DCA=∠DAC,則下列結(jié)論:①∠DCB=∠B;②CD=AB;③△ADC是等邊三角形;④若∠E=30°,則DE=EF+CF.正確的有______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用直尺和圓規(guī)作一個角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依據(jù)是( )
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E是BC邊上的一個動點,連接AE,將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到AF,連接EF,交對角線BD于點G,連接AG.
(1)根據(jù)題意補全圖形;
(2)判定AG與EF的位置關(guān)系并證明;
(3)當AB=3,BE=2時,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生1800人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識 達到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com