【題目】如圖1,G為△ABC紙片的重心,DGACBC于點D,連結BG,剪去△BGD紙片,剩余部分紙片如圖2所示,若原△ABC紙片面積為5,則圖2紙片的面積為_____

【答案】.

【解析】

連接AG,延長AGBDE,設△DGE的面積為S,利用重心的性質和平行線分線段成比例,用S表示其它三角形的面積,最后得出SABC =18S=5,解得S,可得SBDG4S,即可得2紙片的面積=5.

連接AG,延長AGBDE,如圖1,設△DGE的面積為S,

G為△ABC紙片的重心,

BECE,AG2EG,

DGAC

EDDCEGAG12,

SDGC2SDEG2S,

SBEGSCEG3S,

SABG2SBEG6S

SABE3S+6S9S,

SABC2SABE18S,

18S5,解得S,

SBDG4S,

∴圖2紙片的面積=5

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行八百米跑體能測試,測試結果分為A、B、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

(1)求本次測試共調(diào)查了多少名學生?

(2)求本次測試結果為B等級的學生數(shù),并補全條形統(tǒng)計圖;

(3)若該中學八年級共有900名學生,請你估計八年級學生中體能測試結果為D等級的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的頂點AD在直線l上,BAD=60°,以點A為旋轉中心將菱形ABCD順時針旋轉αα30°),得到菱形AB′C′D′,B′C′交對角線AC于點MC′D′交直線l于點N,連接MN,當MNB′D′ 時,解答下列問題:

(1)求證:△AB′MAD′N

(2)α的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小輝和小聰兩人在玩轉盤游戲時,把一個可以自由轉動的轉盤A3等份的扇形區(qū)域,把轉盤B2等份的扇形區(qū)域,并在每一小區(qū)內(nèi)標上數(shù)字(如圖所示),游戲規(guī)則:同時轉動兩個轉盤,當兩轉盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為2的倍數(shù)時,則小輝獲勝;若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù)時,則小聰獲勝;如果指針落在分割線上,則需重新轉動轉盤.在這個游戲中,小輝和小聰兩人獲勝的概率分別為多少?該游戲規(guī)則對雙方公平嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線L上有A、B兩個觀測點,AB的正東方向,AB2km.有一艘小船在點P處,從A處測得小船在北偏西60°的方向,從B處測得小船在北偏東45°方向.

1)求P點到海岸線l的距離.

2)小船從點P處沿射線AP的方向繼續(xù)行駛,求小船到B處的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=6AD=8將矩形ABCD沿直線MN翻折后,點B恰好落在邊AD上的點E處,如果AE=2AM,那么CN的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點E、H分別在AB、AC上,已知BC=40cmAD=30cm

1)求證:AEH∽△ABC;

2)求這個正方形的邊長與面積.

查看答案和解析>>

同步練習冊答案