【題目】如圖,線段AB表示一條對(duì)折的繩子,現(xiàn)從P點(diǎn)將繩子剪斷.剪斷后的各段繩子中最長的一段為30cm.若AP=BP,則原來繩長為( 。cm.
A. 55cmB. 75cmC. 55或75cmD. 50或75cm
【答案】D
【解析】
需要分類討論,兩種情況:(1)對(duì)折點(diǎn)為A處,剪后的繩子為兩個(gè)BP和一個(gè)對(duì)折的AP(2)對(duì)折點(diǎn)為B處,剪后的繩子為兩個(gè)AP和一個(gè)對(duì)折的BP,再根據(jù)AP=BP這個(gè)條件設(shè)未知數(shù),通過最長的一段為30cm,再找到方程即可.
解:AP=BP,設(shè)BP=3x,AP=2x
(1)對(duì)折點(diǎn)為A處,三段繩子為:4x,3x,3x,
4x=30,x=7.5,繩子為10x=75
(2)對(duì)折點(diǎn)為B處,三段繩子為:6x,2x,2x,
6x=30,x=5,繩子為10x=50
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,D為AC中點(diǎn),過點(diǎn)D作DE∥BC,交AB于點(diǎn)E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90。 , 0B=2OA,點(diǎn)A在反比例函數(shù) 的圖象上,點(diǎn)B在反比例函數(shù) 的圖象上,則k的值是( )
A.-4
B.4
C.-2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A,C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過點(diǎn)B,D.
(1)求點(diǎn)A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長交BC于點(diǎn)E,連接BQ并延長交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),則∠BOC的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線Y=ax2+bx一3與X軸相交于A(一1,0),B(3,0),P為拋物線上第四象限上的點(diǎn).
(1)求該拋物線的函數(shù)關(guān)系式.
(2)過點(diǎn)P作PD⊥X軸于點(diǎn)D,PD交BC于點(diǎn)E,當(dāng)線段PE的長度最大時(shí),求點(diǎn)P的坐標(biāo).
(3)當(dāng)線段PE的長度最大時(shí),作PF ⊥BC于點(diǎn)F,連結(jié)DF.在射線PD上有一點(diǎn)Q,滿足∠PQB=∠DFB,問在坐標(biāo)軸上是否存在一點(diǎn)R,使得S△RBE=S△QBE;如果存在,直接寫出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小丁在研究數(shù)學(xué)問題時(shí)遇到一個(gè)定義:對(duì)于排好順序的三個(gè)數(shù): ,稱為數(shù)列.計(jì)算, , 將這三個(gè)數(shù)的最小值稱為數(shù)列的價(jià)值.例如,對(duì)于數(shù)列2,﹣1,3,因?yàn)?/span>, , ,所以數(shù)列2,﹣1,3的價(jià)值為.
小丁進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個(gè)數(shù)的順序時(shí),所得到的數(shù)列都可以按照上述方法計(jì)算其相應(yīng)的價(jià)值.如數(shù)列﹣1,2,3的價(jià)值為;數(shù)列3,﹣1,2的價(jià)值為1;….經(jīng)過研究,小丁發(fā)現(xiàn),對(duì)于“2,﹣1,3”這三個(gè)數(shù),按照不同的排列順序得到的不同數(shù)列中,價(jià)值的最小值為.根據(jù)以上材料,回答下列問題:
(1)數(shù)列﹣4,﹣3,2的價(jià)值為 ;
(2)將“﹣4,﹣3,2”這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)數(shù)列,這些數(shù)列的價(jià)值的最小值為 ,取得價(jià)值最小值的數(shù)列為 (寫出一個(gè)即可);
(3)將2,﹣9,a(a>1)這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)數(shù)列.若這些數(shù)列的價(jià)值的最小值為1,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小晶設(shè)計(jì)的“作互相垂直的兩條直線”的尺規(guī)作圖過程.
作法:如圖,
①在平面內(nèi)任選一點(diǎn)O,作射線OA,OB;
②以O為圓心,以任意長為半徑作弧,分別交OA于點(diǎn)C,交OB于點(diǎn)D;
③分別以C,D為圓心,以大于CD的同樣長為半徑作弧,兩弧交于∠AOB內(nèi)部一點(diǎn)P;
④連接CP、PD;
⑤作直線OP,作直線CD,兩直線相交于點(diǎn)E;則直線CD與OP就是所求作的互相垂直的兩條直線.根據(jù)小晶設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OC= ,CP= ,OP=OP
∴△OPC≌△OPD
∴∠AOP=∠BOP.
∴OE是△COD的高線( )(填推理的依據(jù))
即OE⊥CD.
∴CD與OP互相垂直
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com