【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)為30元,試銷中發(fā)現(xiàn):銷售價(jià)格為36元/件時(shí),每天銷售28件;銷售價(jià)格為32元/件時(shí),每天銷售36件.若這種商品的銷售量(件)與銷售價(jià)格(元)存在一次函數(shù),請(qǐng)回答下列問(wèn)題:
(1)求出與的關(guān)系式;
(2)設(shè)商店銷售這種商品每天獲利(元),寫出關(guān)于的函數(shù)關(guān)系式;
①當(dāng)商店銷售這種商品每天獲利150元,銷售價(jià)格定為多少比較合理;
②銷售價(jià)格定為多少時(shí),商店獲利最大,最大利潤(rùn)是多少元?
【答案】(1);(2);①當(dāng)商店銷售這種商品每天獲利150元,銷售價(jià)格應(yīng)定為35或45元;②銷售價(jià)格定為40元時(shí),商店獲利最大,最大利潤(rùn)是200元.
【解析】
(1)設(shè)與的關(guān)系式為,根據(jù)銷售價(jià)格為36元/件時(shí),每天銷售28件;銷售價(jià)格為32元/件時(shí),每天銷售36件,利用待定系數(shù)法即可求出該關(guān)系式;
(2)根據(jù)“利潤(rùn)(銷售單價(jià)-進(jìn)價(jià))銷售數(shù)量”即可得出關(guān)于的函數(shù)關(guān)系式;①令,求出值,即可得出結(jié)論;②利用配方法得出,利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題.
解:(1)設(shè)與的關(guān)系式為,
根據(jù)題意得:,解得:,
∴與的關(guān)系式為.
(2)由已知得:.
①令,即,
解得:,.
答:當(dāng)商店銷售這種商品每天獲利150元,銷售價(jià)格應(yīng)定為35或45元.
②∵,
∴當(dāng)時(shí),取最大值,最大值為200.
答:銷售價(jià)格定為40元時(shí),商店獲利最大,最大利潤(rùn)是200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx過(guò)A(4,0),B(1,3)兩點(diǎn),點(diǎn)C,B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)CM=MN,且∠CMN=90°時(shí),求此時(shí)△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn),過(guò)點(diǎn)作軸,垂足為點(diǎn),且。
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式的解集;
(3)若是反比例函數(shù)圖象上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形CAB中,CD⊥AB,垂足為D,圓E是△ACD的內(nèi)切圓,切點(diǎn)分別為M,N,F,連接AE,BE.
(1)求∠AEB的度數(shù);
(2)若AD=DB,CD=3,求扇形CAB的弧長(zhǎng)和圓E的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖所示).
(1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形“腳手架”ABCD,使A、D點(diǎn)在拋物線上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2﹣mx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
則m的值是_____,當(dāng)y<5時(shí),x的取值范圍是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com