已知關于x的方程.
(1)當k取何值時,方程有兩個實數根;
(2)若二次函數的圖象與軸兩個交點的橫坐標均為整數,且k為正整數,求k值并用配方法求出拋物線的頂點坐標;
(3)若(2)中的拋物線與x軸交于A、B兩點,與y軸交于C點.將拋物線向上平移n個單位,使平移后得到的拋物線的頂點落在△ABC的內部(不包括△ABC的邊界),寫出n的取值范圍.
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知點坐標為(2,4),直線x=2與軸相交于點,連結,拋物線y=x從點沿方向平移,與直線x=2交于點,頂點到點時停止移動.
(1)求線段所在直線的函數解析式;
(2)設拋物線頂點的橫坐標為,
①用的代數式表示點的坐標;
②當為何值時,線段最短;
(3)當線段最短時,相應的拋物線上是否存在點,使△的面積與△的面積相等,若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在△ABC中,AB=AC=4cm,∠BAC=90°.動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動.設點P的運動時間為ts,四邊形APQC的面積為ycm2.
(1)當t為何值時,△PBQ是直角三角形?
(2)①求y與t的函數關系式,并寫出t的取值范圍;
②當t為何值時,y取得最小值?最小值為多少?
(3)設PQ的長為xcm,試求y與x的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某商場銷售某種品牌的手機,每部進貨價為2500元.市場調研表明:當銷售價為2900元時,平均每天能售出8部;而當銷售價每降低50元時,平均每天就能多售出4部.
(1)當售價為2800元時,這種手機平均每天的銷售利潤達到多少元?
(2)若設每部手機降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數關系式.
(3)商場要想獲得最大利潤,每部手機的售價應訂為多少元?此時的最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點,交y軸與C點.
(1)求該拋物線的解析式.
(2)在該拋物線位于第二象限的部分上是否存在點D,使得△DBC的面積S最大?若存在,求出點D的坐標;若不存在,請說明理由.
(3)設拋物線的頂點為點F,連接線段CF,連接直線BC,請問能否在直線BC上找到一個點M,在拋物線上找到一個點N,使得C、F、M、N四點組成的四邊形為平行四邊形,若存在,請寫出點M和點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知二次函數y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知二次函數圖像與y軸交于點(0,-4),并經過(-1,-6)和(1,2)
(1)求這個二次函數的解析式;
(2)求出這個函數的圖像的開口方向,對稱軸和頂點坐標;
(3)該函數圖像與x軸的交點坐標 .
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
矩形OABC在平面直角坐標系中的位置如圖所示,A、C兩點的坐標分別為A(6,0)、C(0,3),直線與BC邊相交于點D.
(1)求點D的坐標;
(2)若拋物線經過A、D兩點,試確定此拋物線的解析式;
(3)設(2)中的拋物線的對稱軸與直線AD交于點M,點P為對稱軸上一動點,以P、A、M為頂點的三角形與△ABD相似,求符合條件的所有點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com