【題目】已知,如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。求證:AD垂直平分EF。
【答案】見解析
【解析】
由DE⊥AB,DF⊥AC,得出∠AED=∠AFD;因?yàn)?/span>AD是△ABC的角平分線,可得∠1=∠2,DE=DF,推出△AED≌△AFD,即AE=AF,所以點(diǎn)A在EF的垂直平分線上,又DE=DF,推出點(diǎn)D在EF的垂直平分線上,即可證明AD垂直平分EF;
證明:∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD,
又∵AD是△ABC的角平分線,
∴∠1=∠2,DE=DF,
∴△AED≌△AFD(AAS),
∴AE=AF,
∴點(diǎn)A在EF的垂直平分線上(到線段兩端距離相等的點(diǎn)在線段的垂直平分線上),
∵DE=DF,
∴點(diǎn)D在EF的垂直平分線上,
∴AD垂直平分EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,D為BC上一點(diǎn),且∠DAB=45°.
(1) 求∠DAC的度數(shù).
(2) 求證:△ACD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子里共有2個黃球和3個白球,每個球除顏色外都相同,小亮從袋子中任意摸出一個球,結(jié)果是白球,則下面關(guān)于小亮從袋中摸出白球的概率和頻率的說明正確的是( )
A. 小亮從袋中任意摸出一個球,摸出白球的概率是1
B. 小亮從袋中任意摸出一個球,摸出白球的概率是0
C. 在這次實(shí)驗(yàn)中,小亮摸出白球的頻率是1
D. 由這次實(shí)驗(yàn)的頻率去估計(jì)小亮從袋中任意摸出一個球,摸出白球的概率是1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字后,解答問題:
有這樣一道題目:“如圖,E、D是△ABC中BC邊上的兩點(diǎn),AD=AE, .求證△ABE≌△ACD.請根據(jù)你的理解,在題目中的空格內(nèi),把原題補(bǔ)充完整(添加一個適當(dāng)?shù)臈l件),并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥地鐵一號線的開通運(yùn)行給合肥市民出行方式帶來了一些變化,小朱和小張準(zhǔn)備利用課余時間,以問卷的分式對合肥市民的出行方式進(jìn)行調(diào)查,如圖是合肥地鐵一號線圖(部分),小朱和小張分別從塘西河公園站(用A表示)、金斗公園站(用B表示)、云谷路站(用C表示)、萬達(dá)城站(用D表示)這四站中,隨機(jī)選取一站作為調(diào)查的站點(diǎn).
(1)在這四站中,小朱選取問卷調(diào)查的站點(diǎn)是萬達(dá)城站的概率是多少?
(2)求小朱選取問卷調(diào)查的站點(diǎn)與小張選取問卷調(diào)查的站點(diǎn)相鄰的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:在邊長為4的正方形ABCD中,對角線AC、BD交于點(diǎn)O.
探究1:如圖1,若點(diǎn)P是對角線BD上任意一點(diǎn),求線段AP的長的取值范圍;
探究2:如圖2,若點(diǎn)P是△ABC內(nèi)任意一點(diǎn),點(diǎn)M、N分別是AB邊和對角線AC上的兩個動點(diǎn),則當(dāng)AP的值在探究1中的取值范圍內(nèi)變化時,△PMN的周長是否存在最小值?如果存在,請求出△PMN周長的最小值,若不存在,請說明理由;
問題解決:如圖3,在邊長為4的正方形ABCD中,點(diǎn)P是△ABC內(nèi)任意一點(diǎn),且AP=4,點(diǎn)M、N分別是AB邊和對角線AC上的兩個動點(diǎn),則當(dāng)△PMN的周長取到最小值時,直接求四邊形AMPN面積的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形的邊長為,點(diǎn),,,分別在正方形的四條邊上,且,則四邊形的形狀為________,它的面積的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以扇形的頂點(diǎn)為原點(diǎn),半徑所在的直線為軸,建立平面直角坐標(biāo)系,點(diǎn)的坐標(biāo)為,.現(xiàn)從中隨機(jī)選取一個數(shù)記為,則的值既使得拋物線與扇形的邊界有公共點(diǎn),又使得關(guān)于的方程的解是正數(shù)的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BC=2AB,DE⊥AB,M是BC的中點(diǎn),∠BEM=50°,則∠B=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com