(本題滿分12分)如圖,拋物線y=ax2+bx+c經(jīng)過點A(0,4)、B(2,4),它的最高點縱坐標(biāo)為,點P是第一象限拋物線上一點且PA=PO,過點P的直線分別交射線AB、x正半軸于C、D.設(shè)AC=m,OD=n.
【小題1】(1)求此拋物線的解析式;
【小題2】(2)求點P的坐標(biāo)及n關(guān)于m的函數(shù)關(guān)系式;
【小題3】(3)連結(jié)OC交AP于點E,如果以A、C、E為頂點的三角形與△ODP相似,求m的值.
【小題1】(1)設(shè)函數(shù)解析式為…………………………………………1分
解出……………………………………………………………………3分
∴………………………………………………………4分
【小題2】(2)求出點P的坐標(biāo)為(3,2)…………………………………………………6分
∴(0≤m≤6)………………………………………………………8分
【小題3】(3)方法一:①當(dāng)△ACE∽△ODP時(如圖1),∠ACO=∠ODP,∵∠ACO=∠COD
∴∠COD=∠ODP ∴AC=OD………………………………………………9分
∴m=(6?m) 解得:m=2…………………………………………………10分
②當(dāng)△ACE∽△OPD時(如圖2),∠ACO=∠OPD, ∵∠ACO=∠COD
∴∠COD=∠OPD,可得△OPD∽△COD,可得OD2=DP·DC,
即OD2=CD2……………………………………………………11分
(6?m)2=()2, 解得:m=…………12分
方法二:得出AE=…………………………………………10分
① 當(dāng)△ACE∽△ODP時,可求出m=2……………………11分
② 當(dāng)△ACE∽△OPD時,可求出m=………………12分
解析
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達(dá)點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當(dāng)時,求線段的長;
(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當(dāng)t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
如圖,的頂點A、B在二次函數(shù)的圖像上,又點A、B[來分別在軸和軸上,∠ABO=.
1.(1)求此二次函數(shù)的解析式;(4分)
2.
|
點在上述函數(shù)圖像上,當(dāng)與相似時,求點的坐標(biāo).(8分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點,與y軸交于B點,與直線交于A、D兩點。
⑴直接寫出A、C兩點坐標(biāo)和直線AD的解析式;
⑵如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點的縱坐標(biāo).則點落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達(dá)點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當(dāng)時,求線段的長;
(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com