【題目】知識(shí)再現(xiàn):已知,如圖,四邊形ABCD是正方形,點(diǎn)M、N分別在邊BC、CD上,連接AM、AN、MN,∠MAN=45°,延長CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識(shí),我們可以證明MN=BM+DN.
知識(shí)探究:(1)在如圖中,作AH⊥MN,垂足為點(diǎn)H,猜想AH與AB有什么數(shù)量關(guān)系?并證明;
知識(shí)應(yīng)用:(2)如圖,已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,AD=6,則CD的長為 ;
知識(shí)拓展:(3)如圖,四邊形ABCD是正方形,E是邊BC的中點(diǎn),F為邊CD上一點(diǎn),∠FEC=2∠BAE,AB=24,求DF的長.
【答案】(1)AB=AH, 證明見解析;(2)3;(3)8 .
【解析】
(1)先證△ABG≌△ADN,再證△GAM≌△NAM,根據(jù)GM和NM是對(duì)應(yīng)邊,得到AB=AH(全等三角形對(duì)應(yīng)邊上的高相等);
(2)作△ABD關(guān)于直線AB的對(duì)稱△ABE,作△ACD關(guān)于直線AC的對(duì)稱△ACF,延長EB、FC交于點(diǎn)G,則四邊形AEGF是矩形,又AE=AD=AF,所以四邊形AEGF是正方形,設(shè)設(shè)CD=x,則BG=62=4;CG=6 x;BC=2+ x,在Rt△BGC中,得x=3,所以CD的長為3.
(3)過點(diǎn)A作交EF于點(diǎn)M,證明△ABE≌△AME,得到 再證明≌,設(shè)DF=x,得到EF=12+ x;FC=24 x;EC=12,在Rt△EFC中, 解方程即可.
(1)答:AB=AH,
證明:如圖1
∵四邊形ABCD是正方形,
∴
∴
又∵AB=AD,
∵在△ABG和△ADN中,
∴△ABG≌△ADN(SAS),
∴
∵
∴
∴
即
∵在△GAM和△NAM中,
∴△GAM≌△NAM(SAS),
又∵GM和NM是對(duì)應(yīng)邊,
∴AB=AH(全等三角形對(duì)應(yīng)邊上的高相等);
(2)作△ABD關(guān)于直線AB的對(duì)稱△ABE,作△ACD關(guān)于直線AC的對(duì)稱△ACF,
∵AD是△ABC的高,
∴
∴
又∵
∴
延長EB、FC交于點(diǎn)G,則四邊形AEGF是矩形,
又∵AE=AD=AF
∴四邊形AEGF是正方形,
由(1)、(2)知:EB=DB=2,AE=AF=AD=EG=6,
設(shè)CD=x,
∴BG=62=4;CG=6 x;BC=2+ x,
在Rt△BGC中,
解得
故CD的長為3.
(3)如圖3,過點(diǎn)A作交EF于點(diǎn)M,
在△ABE和△AME中,
∴△ABE≌△AME(AAS),
在和中,
≌,
設(shè)DF=x,
∴EF=12+ x/span>;FC=24 x;EC=12,
在Rt△EFC中,
解得
故DF的長為8.
圖3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們在活動(dòng)結(jié)束后的對(duì)話。
(1)求每天的銷售量y(千克)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。(6分)
(2)該超市銷售這種水果每天獲取的利潤為1040元,那么銷售單價(jià)為多少元?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)學(xué)生全部參加“初二生物地理會(huì)考”,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進(jìn)行統(tǒng)計(jì)后分為A,B,C,D四等級(jí),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題(說明:測試成績在總?cè)藬?shù)的前30%考生為A等級(jí),前30%至前70%為B等級(jí),前70%至前90%為C等級(jí),90%以后為D等級(jí))
(1)抽取了 名學(xué)生成績;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中A等級(jí)所在的扇形的圓心角度數(shù)是 ;
(4)若測試成績在總?cè)藬?shù)的前90%為合格,該校初二年級(jí)有800名學(xué)生,求全年級(jí)生物合格的學(xué)生共約多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)的圖象過點(diǎn),且頂點(diǎn)坐標(biāo)為.
求此二次函數(shù)的表達(dá)式;
畫出此函數(shù)圖象,并根據(jù)函數(shù)圖象寫出:當(dāng)時(shí),y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,點(diǎn)E、F分別在AD、BC上,EF與BD相交于點(diǎn)O,AE=CF.
(1)求證:OE=OF;
(2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,BD=DG.
下列結(jié)論:(1)DE=DF;(2)∠B=∠DGF; (3)AB<AF+FG;(4)若△ABD和△ADG的面積分別是50和38,則△DFG的面積是8.其中一定正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)有一片樹林,不僅樹種相同,而且排列有序,如果用平面直角坐標(biāo)系來表示每一棵的具體位置,從第一棵樹開始依次表示為(1,0)→(2,0)→(2,1)→(3,2)→(3,1)→(3,0)→(4.0)→……,則第100棵樹的位置是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com