【題目】如圖,點(diǎn)B是反比例函數(shù)圖象上的一點(diǎn),矩形OABC的周長(zhǎng)是16,正方形BCFG和正方形OCDE的面積之和為32,則反比例函數(shù)的解析式為(  )

A. y B. y C. y D. y

【答案】B

【解析】

設(shè)B點(diǎn)坐標(biāo)為(x,y),根據(jù)正方形BCGH和正方形OCDF的面積之和為32,矩形OABC的周長(zhǎng)是16得到x2+y2=32,x+y=8,再利用完全平方公式可得到xy=16,然后根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義可確定其解析式.

設(shè)B點(diǎn)坐標(biāo)為(x,y),

根據(jù)題意得x2+y2=32,x+y=8,

(x+y)2=64,

x2+2xy+y2=64,即32+2xy=64,

xy=16,

∴反比例函數(shù)的解析式為y=

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的長(zhǎng)AB=2,AB邊與x軸重合,雙曲線y=在第一象限內(nèi)經(jīng)過D點(diǎn)以及BC的中點(diǎn)E.

(1)求A點(diǎn)的橫坐標(biāo);

(2)連接ED,若四邊形ABED的面積為6,求雙曲線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),拋物線y=x22x+4y軸于點(diǎn)B,過點(diǎn)BABx軸交拋物線于點(diǎn)A,連接OA.將該拋物線向下平移m個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在OAB的內(nèi)部(不包括OAB的邊界),則m的取值范圍是( 。

A. 1m5 B. 1m4 C. 1m3 D. 1m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB12cm,AMBN是它的兩條切線,DE切⊙OE,交AMD,BNC,設(shè)ADx,BCy,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2) 請(qǐng)根據(jù)圖象直接寫出時(shí)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ACBC5,AB8,ABx軸,垂足為A,反比例函數(shù)y(x0)的圖象經(jīng)過點(diǎn)C,交AB于點(diǎn)D

(1)OAAB,求k的值;

(2)BCBD,連接OC,求△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=1,E為直角邊AB上任意一點(diǎn),以線段CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①AC⊥ED;②∠BCE=∠ACD;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD面積的最大值為,其中正確的是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB1,點(diǎn)P1是線段AB的黃金分割點(diǎn)(AP1BP1,即P1B2AP1AB),點(diǎn)P2是線段AP1的黃金分割點(diǎn)(AP2P1P2),點(diǎn)P3是線段AP2的黃金分割點(diǎn)(AP3P2P3),…,依此類推,則線段AP2017的長(zhǎng)度是(  )

A. ()2017 B. ()2017 C. ()2017 D. (2)1008

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BPAC于點(diǎn)O,EAC上一點(diǎn),且AE=OC

1)求證:AP=AO;

2)求證:PE⊥AO

3)當(dāng)AE=AC,AB=10時(shí),求線段BO的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案