【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y=kx-1(k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式與點(diǎn)B坐標(biāo);
(2)求△AOB的面積.
【答案】(1);B(4,1);(2)S△AOB=.
【解析】
(1)由點(diǎn)A在一次函數(shù)圖象上,可求出點(diǎn)A的坐標(biāo),結(jié)合點(diǎn)A的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出反比例函數(shù)系數(shù)k的值,從而得出反比例函數(shù)解析式;聯(lián)立一次函數(shù)解析式和反比例函數(shù)解析式,解方程組即可得出結(jié)論;
(2)設(shè)AB交x軸與點(diǎn)C,由一次函數(shù)解析式可求出點(diǎn)C的坐標(biāo),通過分割圖形利用三角形的面積公式即可得出結(jié)論.
(1)∵一次函數(shù)y=x+5的圖象過點(diǎn)A(1,n),
∴n=1+5,解得:n=4,
∴點(diǎn)A的坐標(biāo)為(1,4),
∵反比例函數(shù)y=kx-1 (k≠0)過點(diǎn)A(1,4),
∴k=1×4=4,
∴反比例函數(shù)的解析式為:.
聯(lián)立,解得:或,
∴點(diǎn)B的坐標(biāo)為(4,1);
(2)設(shè)AB交x軸與點(diǎn)C,則C(5,0),如圖所示,
∵A(1,4),B(4,1),
∴S△AOB=S△AOCS△BOC=OCyAOCyB=×5×4×5×1=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn),M是AB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】距離中考體考時(shí)間越來越近,年級(jí)想了解初三年級(jí)1512名學(xué)生周末在家體育鍛煉的情況,在初三年級(jí)隨機(jī)抽取了18名男生和18名女生,對(duì)他們周末在家的鍛煉時(shí)間進(jìn)行了調(diào)查,并收集得到了以下數(shù)據(jù)(單位:分鐘)
男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105
女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72
統(tǒng)計(jì)數(shù)據(jù),并制作了如下統(tǒng)計(jì)表:
時(shí)間 | ||||
男生 | 2 | 4 | ||
女生 | 1 | 5 | 9 | 3 |
分析數(shù)據(jù):兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)如表所示
極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
男生 | 77 | 66.7 | 70 | 617.3 | |
女生 | 69.7 | 70.5 | 547.2 |
(1)請(qǐng)將上面的表格補(bǔ)充完整: , , , , ;
(2)已知該年級(jí)男女生人數(shù)差不多,根據(jù)調(diào)查的數(shù)據(jù),估計(jì)初三年級(jí)周末在家鍛煉的時(shí)間在90分鐘以上(不包含90分鐘)的同學(xué)約有多少人?
(3)體育老師看了表格數(shù)據(jù)后認(rèn)為初三年級(jí)的女生周末鍛煉做得比男生好,請(qǐng)你結(jié)合統(tǒng)計(jì)數(shù)據(jù),寫出兩條支持體育老師觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E是的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若cosC=,AC=6,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項(xiàng)重要內(nèi)容.某市城區(qū)近幾年來,通過拆遷舊房,植草,栽樹,修建公園等措施,使城區(qū)綠地面積不斷增加(如圖所示)
(1)根據(jù)圖中所提供的信息,回答下列問題:2001年底的綠地面積為 公頃,比2000年底增加了 公頃;在1999年,2000年,2001年這三年中,綠地面積增加最多的是 年;
(2)為滿足城市發(fā)展的需要,計(jì)劃到2003年底使城區(qū)綠地總面積達(dá)到72.6公頃,試求今明兩年綠地面積的年平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①abc>0;②2a+b=0;③若m為任意實(shí)數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線(x>0)交于點(diǎn).
(1)求a,k的值;
(2)已知直線過點(diǎn)且平行于直線,點(diǎn)P(m,n)(m>3)是直線上一動(dòng)點(diǎn),過點(diǎn)P分別作軸、軸的平行線,交雙曲線(x>0)于點(diǎn)、,雙曲線在點(diǎn)M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)時(shí),直接寫出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);②若區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù)不超過8個(gè),結(jié)合圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到矩形GBEF,點(diǎn)A落在矩形ABCD的邊CD上,連結(jié)CE,CF,若∠CEF=α,則tanα=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn),,線段與軸平行,且,拋物線
(1)當(dāng)時(shí),求該拋物線與軸的交點(diǎn)坐標(biāo);
(2)當(dāng)時(shí),求的最大值(用含的代數(shù)式表示);
(3)當(dāng)拋物線經(jīng)過點(diǎn)時(shí),的解析式為__________,頂點(diǎn)坐標(biāo)為__________,點(diǎn)__________(填“是”或“否”)在上.
若線段以每秒2個(gè)單位長(zhǎng)的速度向下平移,設(shè)平移的時(shí)間為(秒).
①若與線段總有公共點(diǎn),求的取值范圍;
②若同時(shí)以每秒3個(gè)單位長(zhǎng)的速度向下平移,在軸及其右側(cè)的圖象與直線總有兩個(gè)公共點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com