【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬(wàn)元) | 2 |
種植樹木利潤(rùn)y1(萬(wàn)元) | 4 |
種植花卉利潤(rùn)y2(萬(wàn)元) | 2 |
(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹木共獲利利潤(rùn)W萬(wàn)元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?
(3)若該專業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
【答案】
(1)解:設(shè)y1=kx,
由表格數(shù)據(jù)可知,函數(shù)y1=kx的圖像過(2,4),
∴4=k2,
解得:k=2,
故利潤(rùn)y1關(guān)于投資量x的函數(shù)關(guān)系式是y1=2x(x≥0);
∵設(shè)y2=ax2,
由表格數(shù)據(jù)可知,函數(shù)y2=ax2的圖像過(2,2),
∴2=a22,
解得:a= ,
故利潤(rùn)y2關(guān)于投資量x的函數(shù)關(guān)系式是:y2= x2(x≥0)
(2)解:因?yàn)榉N植花卉m萬(wàn)元(0≤m≤8),則投入種植樹木(8﹣m)萬(wàn)元,
w=2(8﹣m)+ m2= m2﹣2m+16= (m﹣2)2+14,
∵a=0.5>0,0≤m≤8,
∴當(dāng)m=2時(shí),w的最小值是14,
∵a= >0,
∴當(dāng)m>2時(shí),w隨m的增大而增大
∵0≤m≤8,
∴當(dāng)m=8時(shí),w的最大值是32,
答:他至少獲得14萬(wàn)元利潤(rùn),他能獲取的最大利潤(rùn)是32萬(wàn)元.
(3)解:根據(jù)題意,當(dāng)w=22時(shí), (m﹣2)2+14=22,
解得:m=﹣2(舍)或m=6,
故:6≤m≤8
【解析】(1)根據(jù)題意設(shè)y1=kx、y2=ax2 , 將表格中數(shù)據(jù)分別代入求解可得;(2)由種植花卉m萬(wàn)元(0≤m≤8),則投入種植樹木(8﹣m)萬(wàn)元,根據(jù)“總利潤(rùn)=花卉利潤(rùn)+樹木利潤(rùn)”列出函數(shù)解析式,利用二次函數(shù)的性質(zhì)求得最值即可;(3)根據(jù)獲利不低于22萬(wàn),列出不等式求解可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長(zhǎng)15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬(wàn)元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬(wàn)元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過5.2萬(wàn)元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某城市四月份1至8日的日最高氣溫隨時(shí)間變化的折線統(tǒng)計(jì)圖,小剛根據(jù)圖1將數(shù)據(jù)統(tǒng)計(jì)整理后制成了圖2.
根據(jù)圖中信息,解答下列問題:
(1)將圖2補(bǔ)充完整;
(2)這8天的日最高氣溫的中位數(shù)是 C;
(3)計(jì)算這8天的日最高氣溫的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,點(diǎn)E、D分別是AC,BC邊的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),連接PE,PD,PC,DE.設(shè)AP=x,圖1中某條線段的長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖像大致如圖2所示,則這條線段可能是圖1中的( )
A.線段PD
B.線段PC
C.線段PE
D.線段DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字,根據(jù)所給信息解答下面問題:把幾個(gè)數(shù)用大括號(hào)括起來,中間用逗號(hào)隔開,其中大括號(hào)內(nèi)的數(shù)稱其為集合的元素,如:{3,4},3和4是集合{3,4}的元素。如果一個(gè)集合滿足:只要其中有一個(gè)元素a,使得﹣2a+4也是這個(gè)集合的元素,那么這樣的集合我們稱為條件集合。例如:⑴{3,﹣2},因?yàn)椹?×3+4=﹣2,﹣2恰好是這個(gè)集合的元素,所以{3,﹣2}是條件集合。⑵{﹣2,9,8},因?yàn)椹?×(﹣2)+4=8,8恰好是這個(gè)集合的元素,所以{﹣2,9,8}是條件集合.
(1)集合{﹣5,14}是否是條件集合?
(2)集合是否是條件集合?
(3)若集合{8,n}和{m}都是條件集合.求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次設(shè)計(jì)比賽中,小軍10次射擊的成績(jī)是:6環(huán)1次,7環(huán)3次,8環(huán)2次,9環(huán)3次,10環(huán)1次,關(guān)于他的射擊成績(jī),下列說法正確的是( )
A.極差是2環(huán)
B.中位數(shù)是8環(huán)
C.眾數(shù)是9環(huán)
D.平均數(shù)是9環(huán)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】谷歌人工智能AlphaGo機(jī)器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關(guān)注,人工智能完勝李世石.某教學(xué)網(wǎng)站開設(shè)了有關(guān)人工智能的課程并策劃了A,B兩種網(wǎng)上學(xué)習(xí)的月收費(fèi)方式:
設(shè)小明每月上網(wǎng)學(xué)習(xí)人工智能課程的時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA元、yB元.
(1)當(dāng)x≥50時(shí),分別求出yA、yB與x之間的函數(shù)表達(dá)式;
(2)若小明3月份上該網(wǎng)站學(xué)習(xí)的時(shí)間為60小時(shí),則他選擇哪種方式上網(wǎng)學(xué)習(xí)合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算與解不等式組
(1)計(jì)算:|﹣2 |﹣4sin45°+(3﹣π)°﹣( )﹣2;
(2)解不等式組: ,并在數(shù)軸上表示它的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)E為AH的中點(diǎn),點(diǎn)F為GH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com